Answer:
The equation of a parabola is

Step-by-step explanation:
(h,k) is the vertex and (f,k) is the focus.
Thus, f = 1, k = −4.
The distance from the focus to the vertex is equal to the distance from the vertex to the directrix: f - h = h - 2.
Solving the system, we get h = 3/2, k = -4, f = 1.
The standard form is:

The general form is:

The vertex form is:

The axis of symmetry is the line perpendicular to the directrix that passes through the vertex and the focus: y = -4.
The focal length is the distance between the focus and the vertex: 1/2.
The focal parameter is the distance between the focus and the directrix: 1.
The latus rectum is parallel to the directrix and passes through the focus: x = 1.
The length of the latus rectum is four times the distance between the vertex and the focus: 2.
The eccentricity of a parabola is always 1.
The x-intercepts can be found by setting y = 0 in the equation and solving for x.
x-intercept:

The y-intercepts can be found by setting x = 0 in the equation and solving for y.
y-intercepts:


OK, so the graph is a parabola, with points x=0,y=0; x=6,y=-9; and x=12,y=0
Because the roots of the equation are 0 and 12, we know the formula is therefore of the form
y = ax(x - 12), for some a
So put in x = 6
-9 = 6a(-6)
9 = 36a
a = 1/4
So the parabola has a curve y = x(x-12) / 4, which can also be written y = 0.25x² - 3x
The gradient of this is dy/dx = 0.5x - 3
The key property of a parabolic dish is that it focuses radio waves travelling parallel to the y axis to a single point. So we should arrive at the same focal point no matter what point we chose to look at. So we can pick any point we like - e.g. the point x = 4, y = -8
Gradient of the parabolic mirror at x = 4 is -1
So the gradient of the normal to the mirror at x = 4 is therefore 1.
Radio waves initially travelling vertically downwards are reflected about the normal - which has a gradient of 1, so they're reflected so that they are travelling horizontally. So they arrive parallel to the y axis, and leave parallel to the x axis.
So the focal point is at y = -8, i.e. 1 metre above the back of the dish.
Answer:
There are infinitely many solutions
Step-by-step explanation:
Firstly, I need to change f to x as the system won’t accept the word f
Let’s take a look at the question;
3 is less than x
The domain of our answer lies in the the range of values where we have numbers that are greater than 3
This means we can rewrite our inequality as x is greater than 3
Now, simply because we have an infinite amount of numbers which are greater than 3 of which x can take any of the values, we can conclude that the number of values we have for x are infinite and does not end
This makes us have infinitely many solutions for the value of x
4x-1=11 and x would equal 3
Answer:
can you take a better picture please
it's a bit blurry