1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
14

An antique chair was purchased in the year 2013 for $500. At the time of purchase, an appraiser estimated that

Mathematics
1 answer:
kaheart [24]3 years ago
8 0

Answer:

A

Step-by-step explanation:

To find 10% of 500 you would multiply 500 by 0.1

You might be interested in
Identify next three numbers in this sequence: 2, 6, 3, 9, 6, 18, 15
kherson [118]

Answer:

45,42,126

multiply by 3

6 0
3 years ago
15.7·3.09+15.7·2.91 Please help. WILL GIVE BRAINLIEST!
frez [133]

Answer:

the answer is 94.2

Step-by-step explanation:

5 0
3 years ago
Raquel can type 63 words every minnute.Rick type then Raquel in 135 minute?Circle the letter of the correct answer.A 1350 B 4599
lozanna [386]

Answer: 1350

Step-by-step explanation:

Here is the correct question.

Raquel can type an average of 63 words per minute. Rick can type 73 words per minute. how many more words can Rick type than Raquel in 135 minutes? Jared chose B as the correct answer. How did he get that answer? Jared said the answer is 4599. How did he get that answer?

Rick's word per minute= 73

Raquel's word per minute= 63

Ricks word in 135minute= 73×135 = 9855

Raquel's word in 135 minutes=63×135 = 8505

=9855 - 8505

= 1350

Rick can type 1350 more words than Raquel in 135 minutes.

Jared's answer is wrong. He got the answer by multiplying 63 by 73 which gives 4599.

8 0
3 years ago
Read 2 more answers
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
7.25t + 6 = 13.5t + 11<br><br><br> The solution is t =
hodyreva [135]

Answer:

the answer is 0.24 jjjjjjjjjjjjjj

5 0
3 years ago
Read 2 more answers
Other questions:
  • When is the median the most useful measure of central tendency?
    15·2 answers
  • A half gallon of milk cost $2.40 and a gallon cost $3.50 is this proportional or non proportional
    9·2 answers
  • Use the Distance Formula to write an equation of the parabola with focus F (0, 4) and directrix y = -4.
    15·1 answer
  • A restaurant offers 7 appetizers, 4 salads, 5 entrees and 8 desserts. in how many ways can a customer select a meal, if a meal c
    14·1 answer
  • Write a real -world word problem that can be solved using elapsed time. Include the solution.
    5·1 answer
  • THe length of each side of a square was increased by 6 inches so the perimeter is now 52 inches .What was the original length of
    12·2 answers
  • Write a multiplication equation to represent each division equation 50 divided by 10 equals 5
    13·1 answer
  • Convert 0.55555 into a fraction
    13·2 answers
  • What is the area of the trapezoid
    7·2 answers
  • Please help urgently ​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!