1. The probability that we select a red marble is 1/3.
We found this out by taking the amount of red marbles there are and the total amount of marbles. The total amount of marbles is 18 and there are red marbles. So, it would become 6 out of 18 or 6/18. Then, we simplify 6/18 to the simplest form. The greatest common factor of both of those numbers is 6. Lastly, we divide each of them by 6 to get the simplest form.
6/18 = (6/6)/(18/6)
(6/6)/(18/6) = 1/3
So, therefore, the theoretical probability of picking a red marble is 1/3.
2. The probability that we select a blue marble is 2/3.
We can find this out by taking the amount of blue marbles there are and the total amount of marbles. We know that the total amount of marble is 18 and there are 12 blue marbles. So, we simply get the GCF (greatest common factor) and divide them by it.
Greatest Common Factor of 12 and 18 = 6
12/18 = (12/6)/(18/6)
(12/6)/(18/6) = 2/3
Thus, the theoretical probability of picking a blue marble is 2/3.
We can start from the given line's coefficients and translate the line from the origin to the given point.
4(x -(-2)) -(y -3) = 0
4x +8 -y +3 = 0
The equation of the desired line is ...
4x -y = -11
_____
For standard form line ax+by=c, any parallel line will have only a different value of c. For c=0, the line goes through the origin (0, 0). To make it go through point (h, k) we can write it as
a(x-h) +b(y-k) = 0
which is completely equivalent to
ax +by = ah +bk
Answer:
ABCD is a parallelogram.
Step-by-step explanation:
A parallelogram is a quadrilateral that has two parallel and equal pairs of opposite sides.
From the given diagram,
Given: AD = BC and AD || BC, then:
i. AB = DC (both pairs of opposite sides of a parallelogram are congruent)
ii. <ADC = < BCD and < DAB = < CBA
thus, AD || BC and AB || DC (both pairs of opposite sides of a parallelogram are parallel)
iii. < BAC = < DCA (alternate angle property)
iv. Join BD, line AC and BC are the diagonals of the quadrilateral which bisect each other. The two diagonals are at a right angle to each other.
v. <ADC + < BCD + < DAB + < CBA =
(sum of angles in a quadrilateral equals 4 right angles)
Therefore, ABCD is a parallelogram.