<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
The answer is B. 10 9/12 + 2 1/12= 12 10/12. 12÷2=6 10÷2=5 making the answer 12 5/6
1/36+1/36=2/36. why? because their are 6 sides. you must multiply. and for each dice ylu have a possibilty of 1/36.
Mean= (5+6+5+6+9)/5= 7.2 coins
Explanation: The mean is the average of a data set. Add the numbers from the data set and divide by how many numbers.
|x| = x for x ≥ 0
examples:
|3| = 3; |0.56| = 0.56; |102| = 102
|x| = -x for x < 0
examples:
|-3| = -(-3) = 3; |-0.56| = -(-0.56) = 0.56; |-102| = 102
--------------------------------------------------------------------------------
Use PEMDAS:
P Parentheses first
E Exponents (ie Powers and Square Roots, etc.)
MD Multiplication and Division (left-to-right)
AS Addition and Subtraction (left-to-right)
--------------------------------------------------------------------------------

Put the values of x to the equation of the function h(x):
