1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
15

Practice with proofs on aleks?

Mathematics
1 answer:
Sholpan [36]3 years ago
4 0
Give more of an answer please
You might be interested in
Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca
qaws [65]

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

3 0
3 years ago
Me dicen la sifra 5p-14=8p+19
Alex
5p-14=8p+19
8p-5p = -3p
-3p-14=18
14+18 = 33
33/-3=-11
7 0
3 years ago
On a Saturday a library check out 66 books and if 18 of the books were fiction what is the ratio of nonfiction books to fiction
dalvyx [7]
66 - 18 = 48
Nonfiction : Fiction
48 : 18
Divide both by 6
8 : 3
8 0
4 years ago
Read 2 more answers
Please help! I’ll do anything I’ll give u brainly!
lana66690 [7]

Answer:

y>0.5

Step-by-step explanation:

Rearrange the equation so "y" is on the left and everything else on the right.

Plot the "y=" line (make it a solid line for y≤ or y≥, and a dashed line for y< or y>

Shade above the line for a "greater than" (y> or y≥)

or below the line for a "less than" (y< or y≤).

y+x>1

-y      -y

x>1-y

2x+y<3

   -y    -y

2x<3-y

divide by 2

x<1.5-y/2

1.5-y/2>1-y

-1.5+y   -1.5+y

<u>y>0.5</u>

8 0
3 years ago
Can you match it??. Only if you know please
Dennis_Churaev [7]

Answer:

Step-by-step explanation:

triangle: a+b>c. If two lengths are put together, and equals more than the length of the third side, then it's a triangle

right triangle: a2+b2=c2 if the square of the two lengths equal the square of the third, then it's a right triangle

acute triangle: a2+b2>c2 if the square of the two lengths are greater than the square of the third it's acute

obtuse triangle:a2+b2<c2 if the square of the two lengths are less than the square of the third it's obtuse

8 0
3 years ago
Other questions:
  • Solve for x<br><br> 3x + 3 − x + (−7) &gt; 6
    12·1 answer
  • Fill in the missing number in this newspaper report:
    15·1 answer
  • what is the correlation coefficient of the linear fit of the data shown below, to the nearest hundredth
    12·1 answer
  • Which number is not in scientific notation?
    15·1 answer
  • Enter values for the slope, m, and the y-intercept,b
    12·1 answer
  • Mrs. Nelson has a rectangular flower box that is 5 feet long and 2 feet tall. She wants the width of the box to be no more than
    15·1 answer
  • Please help!!complete the square to solve the equation below. x^2+x=19/4
    14·1 answer
  • 2) W
    6·1 answer
  • Are the angle measurements in this triangle correct?
    9·2 answers
  • Consider the line 7x+6y=5.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!