1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
11

Help with both plz I’ll mark brainliest

Mathematics
1 answer:
LekaFEV [45]3 years ago
5 0

Answer:

(1,6) is not a solution and I think the second one is: c I think

Step-by-step explanation:

You might be interested in
bre makes 2 pounds of bread dough he separates the dough in 1/4 pound loaves before baking them in the oven how many loaves does
3241004551 [841]
That would be 8. 1/4 goes into 1 4 times so it goes into 2 8 times.
8 0
3 years ago
Read 2 more answers
What is bigger 3.345 or 3.35 or 3.3
Sidana [21]
3.35 is bigger then 3.345
8 0
3 years ago
On a piece of paper, graph y=-3x-2
svet-max [94.6K]
Hope the answer helps!!!
:)

7 0
3 years ago
A number b increased by 3 is greater than or equal to -26
photoshop1234 [79]

A number b increased by 3 is greater than or equal to -26:

b+3\geq-26\qquad\text{subtract 3 from both sides}\\\\\boxed{b\geq-29}

5 0
3 years ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
3 years ago
Other questions:
  • [x + 3y = -4] [2x + 6y = 5]
    5·1 answer
  • barb is making a bead necklace she strings 1white bead then 3 blue beads then 1 white bead and so on write the numbers for the f
    5·1 answer
  • F(x) = 4x^2 + 5x + 3; g(x) = 5x - 7, find g(f(x)).
    11·1 answer
  • 3. 3(2x - 1) + 4 = 3 - 5(1 - x)<br><br>​
    11·2 answers
  • Solve for x..........
    5·1 answer
  • One angle of a right triangle measures 65°. What is the measure of the other acute angle?
    5·1 answer
  • Javier built a skateboard ramp by elevating one end of an 8-foot piece of plywood so that it makes a 20 degree angle with the gr
    6·1 answer
  • D + -4 = 12<br>how do i find d?​
    15·2 answers
  • Plz help with this question.If can't do it don't answer.
    15·2 answers
  • Solve the inequality.<br><br> 5/6t - 3≥3t + 6
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!