Answer:
Triangle E
Step-by-step explanation:
(x,y) --> (y,-x)
Answer:
½ sec²(x) + ln(|cos(x)|) + C
Step-by-step explanation:
∫ tan³(x) dx
∫ tan²(x) tan(x) dx
∫ (sec²(x) − 1) tan(x) dx
∫ (sec²(x) tan(x) − tan(x)) dx
∫ sec²(x) tan(x) dx − ∫ tan(x) dx
For the first integral, if u = sec(x), then du = sec(x) tan(x) dx.
∫ u du = ½ u² + C
Substituting back:
½ sec²(x) + C
For the second integral, tan(x) = sin(x) / cos(x). If u = cos(x), then du = -sin(x) dx.
∫ -du / u = -ln(u) + C
Substituting back:
-ln(|cos(x)|) + C
Therefore, the total integral is:
½ sec²(x) + ln(|cos(x)|) + C
Answer:
Angle I = 90 degrees
Angle J = 61 degrees
Angle K = 29 degrees
Step-by-step explanation:
Angle I is given
We know that the angles in all triangles add up to 180. Since we are given that angle I is equal to 90 degrees, we now know that angle J + angle K = 90 degrees:
(5x+26) + (2x+15) = 90
Solve for X:
7x + 41 = 90
7x = 49
x = 7
Angle J = (5x + 26) = (5(7) + 26) = 61
Angle K = (2x + 15) = (2(7) + 15) = 29
Checking your work: 61 + 29 = 90
33+9= 42+12= 54+2=90-56= 34 34+3x
I don't know