Answer:
25
Step-by-step explanation:
First expression: A= k/M
when A = 15 and M = 5, k = A×M = 75
therefore, when M = 4, A = 75/3 = 25
Step-by-step explanation:
1. Add all the different candies together
1/8 + 1/2 + 2/3=
2. Find the lowest common multiple of all the denominators
All the denominators can evenly multiply to 24 so 24 is the Lowest Common Denominator.
3. Multiply to make all the denominators 24
8x3=24 2x12=24 3x8=24
4. Whatever you did to the denominators, do the same thing to the numerators of that specific denominator.
1x3/8x3 1x12/2x12 2x8/3x8
5. Now that the denominators are the same for all the fractions, add all the numerators together.
3/24 + 12/24 + 16/24
3+12+16= 31
ANSWER: Natalie had 31/24 pounds of candy in all
Note: The decimal form is 1.292 pounds
Answer:
Yes
Step-by-step explanation:
An answer to an equation can be a decimal!
-Please mark as brainliest!-
-Hope this helps!-
-Good luck!-
25/1.75 is approximately 14
30/2.8 is about 10. Because the kids need BOTH ribbon and fabric, only 10 can participate because that's all the fabric available
Let's work with 2-by-2 matrices so we're on the same page. The ideas will work for any appropriate matrices.
From the rule of matrix multiplication, we see:
![\left[\begin{array}{cc}a_{11} & a_{12} \\a_{21} & a_{22} \end{array}\right] \left[\begin{array}{cc}b_{11} & b_{12} \\b_{21} & b_{22} \end{array}\right] = \left[\begin{array}{cc} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22} b_{22} \end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da_%7B11%7D%20%26%20a_%7B12%7D%20%5C%5Ca_%7B21%7D%20%26%20a_%7B22%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db_%7B11%7D%20%26%20b_%7B12%7D%20%5C%5Cb_%7B21%7D%20%26%20b_%7B22%7D%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%20a_%7B11%7Db_%7B11%7D%20%2B%20a_%7B12%7Db_%7B21%7D%20%26%20a_%7B11%7Db_%7B12%7D%20%2B%20a_%7B12%7Db_%7B22%7D%20%5C%5C%20a_%7B21%7Db_%7B11%7D%20%2B%20a_%7B22%7Db_%7B21%7D%20%26%20a_%7B21%7Db_%7B12%7D%20%2B%20a_%7B22%7D%20b_%7B22%7D%20%5Cend%7Barray%7D%5Cright%5D%20)
As you noted, we see the columns of B contributing to the rows of C. The question is, why would we ever have defined matrix multiplication this way?
Here's a nontraditional way of feeling this connection. We can define matrix multiplication as "adding multiplication tables." A multiplication table is made by starting with a column and a row. For example,

We then fill this table in by multiplying the row and column entries:
![\begin{array}{ccc} {} & [1] & [2] \\ 1| &1 & 2 \\ 2| & 2 &4 \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bccc%7D%20%7B%7D%20%26%20%5B1%5D%20%26%20%5B2%5D%20%5C%5C%201%7C%20%261%20%26%202%20%5C%5C%202%7C%20%26%202%20%264%20%5Cend%7Barray%7D)
It's then reasonable to say that given two matrices A and B, we can construct multiplication tables by taking the columns of A and pairing them with the rows of B:
![\left[\begin{array}{cc}a_{11} & a_{12} \\a_{21} & a_{22} \end{array}\right] \left[\begin{array}{cc}b_{11} & b_{12} \\b_{21} & b_{22} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da_%7B11%7D%20%26%20a_%7B12%7D%20%5C%5Ca_%7B21%7D%20%26%20a_%7B22%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db_%7B11%7D%20%26%20b_%7B12%7D%20%5C%5Cb_%7B21%7D%20%26%20b_%7B22%7D%20%5Cend%7Barray%7D%5Cright%5D%20)
![= \begin{array}{cc} {} & \left[\begin{array}{cc} b_{11} & b_{12}\end{array} \right]\\ \left[\begin{array}{c} a_{11} \\ a_{21} \end{array} \right] \end{array} +\begin{array}{cc} {} & \left[\begin{array}{cc} b_{21} & b_{22}\end{array} \right]\\ \left[\begin{array}{c} a_{12} \\ a_{22} \end{array} \right] \end{array}](https://tex.z-dn.net/?f=%3D%20%5Cbegin%7Barray%7D%7Bcc%7D%20%7B%7D%20%26%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%20b_%7B11%7D%20%26%20b_%7B12%7D%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20a_%7B11%7D%20%5C%5C%20a_%7B21%7D%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Cend%7Barray%7D%20%2B%5Cbegin%7Barray%7D%7Bcc%7D%20%7B%7D%20%26%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%20b_%7B21%7D%20%26%20b_%7B22%7D%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20a_%7B12%7D%20%5C%5C%20a_%7B22%7D%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Cend%7Barray%7D)
![= \left[\begin{array}{cc} a_{11} b_{11} & a_{11} b_{12} \\ a_{21} b_{11} & a_{21} b_{12} \end{array} \right] + \left[\begin{array}{cc} a_{12} b_{21} & a_{12} b_{22} \\ a_{22} b_{21} & a_{22} b_{22} \end{array} \right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%20a_%7B11%7D%20b_%7B11%7D%20%26%20a_%7B11%7D%20b_%7B12%7D%20%5C%5C%20a_%7B21%7D%20b_%7B11%7D%20%26%20a_%7B21%7D%20b_%7B12%7D%20%5Cend%7Barray%7D%20%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%20a_%7B12%7D%20b_%7B21%7D%20%26%20a_%7B12%7D%20b_%7B22%7D%20%5C%5C%20a_%7B22%7D%20b_%7B21%7D%20%26%20a_%7B22%7D%20b_%7B22%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Adding these matrices together, we get the exact same expression as the traditional definition.