Step-by-step explanation:
For a quadratic equation y = ax² + bx + c, the vertex (the maximum or minimum point) is at x = -b/(2a).
1) y = -0.5t² + 2t + 38
The maximum is at:
t = -2 / (2 × -0.5)
t = 2
The maximum height is:
y = -0.5(2)² + 2(2) + 38
y = 40
The coordinates of the vertex are (2, 40). That means the missile reaches a maximum height of 40 km after 2 minutes.
2) y = -4.9t² + 12t + 1.6
The maximum is at:
t = -12 / (2 × -4.9)
t = 1.22
The maximum height is:
y = -4.9(1.22)² + 12(1.22) + 1.6
y = 8.95
The coordinates of the vertex are (1.22, 8.95). That means the missile reaches a maximum height of 8.95 m after 1.22 seconds.
3) y = -0.04x² + 0.88x
The maximum is at:
x = -0.88 / (2 × -0.04)
x = 11
The maximum height is:
y = -0.04(11)² + 0.88(11)
y = 4.84
The maximum height of the tunnel is 4.84 meters.
The maximum width is when y = 0.
0 = -0.04x² + 0.88x
0 = -0.04x (x − 22)
x = 22
The maximum width is 22 feet.
To a higher number the six changes value in this number above
Answer:
-2a + 3
Step-by-step explanation:
We can substitute a + 7 for x:
f(a + 7) = 17 - 2(a+7) = 17 - 2a - 14 = -2a + 3
Answer:
Step-by-step explanation:
Given a function
, we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
" to another "
".
The rate of change of
between
and
can be calculated as follows:

For:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

And for:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

<em>Translation:</em>
Dada una función
, llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
" a otro "
".
La tasa de variación de
entre
y
, puede ser calculada de la siguiente forma:

Para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Y para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:
