I believe the answer is B. Heart
There are two main organs:
Kidney: purify blood from toxins, and harmful chemicals and excretes them from the body in the form of urine.
Liver: inactivates and filters toxins from the bloood and removes toxic substances that have been ingested, such as food additives, harmful minerals, toxic medications, excess hormones.
Energy is required for the normal functioning of the organs in the body<span>. Many tissues can also use fat or protein as an energy source but others, such as the brain and red blood cells, can only use </span>glucose<span>. </span>Glucose<span> is stored in the </span>body<span> as glycogen. The liver is an important storage site for glycogen.</span>
Answer:
Explanation:
A protease is an enzyme that catalyzes the hydrolysis of the peptide bonds that tie polypeptide chains together, releasing individual amino acid subunits. The L and D nomenclature for amino acids defines the structure of the glyceraldehyde isomer through which the amino acid can be produced.
SEE BELOW FOR THE APPROPRIATE STRUCTURES.
We need to figure out why swine proteases hydrolyze L-amino acids but not D-amino acids in any way. we know that enzymatic catalysts act as polypeptides if you can recall. They must retain a very precise three-dimensional structure for a catalytic activity to occur. Substrates that do not quite match the required configuration at the active site will not be reacted to — this is a "lock and key" style.
The present exercise may be explained by the fact that the configuration and structure of D-amino acids prevent them from binding properly to the active site of the protease enzyme. Perhaps they're pointed in the wrong direction, or perhaps there happens to be missing electrical interaction that's needed to keep the substrate in position.
Nonetheless, L-amino acids, on the other hand, seem to have the right configurational aspects in the active site and are hydrolyzed.