Answer:
- (x, y) = (3, 5)
- (x, y) = (1, 2)
Step-by-step explanation:
A nice graphing calculator app makes these trivially simple. (See the first two attachments.) It is available for phones, tablets, and as a web page.
__
The usual methods of solving a system of equations involve <em>elimination</em> or <em>substitution</em>.
There is another method that is relatively easy to use. It is a variation of "Cramer's Rule" and is fully equivalent to <em>elimination</em>. It makes use of a formula applied to the equation coefficients. The pattern of coefficients in the formula, and the formula itself are shown in the third attachment. I like this when the coefficient numbers are "too messy" for elimination or substitution to be used easily. It makes use of the equations in standard form.
_____
1. In standard form, your equations are ...
Then the solution is ...

__
2. In standard form, your equations are ...
Then the solution is ...

_____
<em>Note on Cramer's Rule</em>
The equation you will see for Cramer's Rule applied to a system of 2 equations in 2 unknowns will have the terms in numerator and denominator swapped: ec-bf, for example, instead of bf-ec. This effectively multiplies both numerator and denominator by -1, so has no effect on the result.
The reason for writing the formula in the fashion shown here is that it makes the pattern of multiplications and subtractions easier to remember. Often, you can do the math in your head. This is the method taught by "Vedic maths" and/or "Singapore math." Those teaching methods tend to place more emphasis on mental arithmetic than we do in the US.
Answer:
Option c) y=
is correct
The value of y is 3
Step-by-step explanation:
Given equation is
To solve the given equation for y
(converting mixed fraction to normal fraction )
(taking LCM 25 )
(adding the terms )
(now convert fraction into mixed fraction )
Therefore y=
Option c) y=
is correct
The value of y is 3
10⁻⁵ is the same number as 1 / 10⁵ .
Because, 9 x 9 = 81. Hope I helped!
Answer:
Point of intersection (-11/3 , 1/3)
All distances from the vertices are 
Step-by-step explanation:
The vertices of the triangle is A(-3,5) , B (1,1) and C (-7,-3)
We need to find the perpendicular bisector of the triangle first
let's take one side connecting A and B
mid point of A and B = (-1,3)
Slope of the line joining A and B = -1
slope of perpendicular to line joining A and B = 1
equation of line passing through (-1,3) with slope 1
y - 3 = 1(x-(-1))
y -3 = x+1
x-y = -4 ............(1)
similarly
mid point joining B and C = (-3,-1)
slope perpendicular to line joining B and C = -2
Equation of perpendicular bisector of line joining B and C =
y +1 = -2(x +3 )
y+1 = -2x -6
2x+y = -7 ..........(2)
On solving 1 and 2
x= -11/3 , y= 1/3
Distances
From A = 
From B = 
From C = 