1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
10

29" id="TexFormula1" title="\lim_{n \to \0}(x/(tan⁡(x))^(cot⁡(x)^2 )" alt="\lim_{n \to \0}(x/(tan⁡(x))^(cot⁡(x)^2 )" align="absmiddle" class="latex-formula">
Mathematics
1 answer:
Viefleur [7K]3 years ago
6 0

It looks like the limit you want to compute is

\displaystyle L = \lim_{x\to0}\left(\frac x{\tan(x)}\right)^{\cot^2(x)}

Rewrite the limand with an exponential and logarithm:

\left(\dfrac{x}{\tan(x)}\right)^{\cot^2(x)} = \exp\left(\cot^2(x) \ln\left(\dfrac{x}{\tan(x)}\right)\right) = \exp\left(\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)}\right)

Now, since the exponential function is continuous at 0, we can write

\displaystyle L = \lim_{x\to0} \exp\left(\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)}\right) = \exp\left(\lim_{x\to0}\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)}\right)

Let <em>M</em> denote the remaining limit.

We have \dfrac x{\tan(x)}\to1 as x\to0, so \ln\left(\dfrac x{\tan(x)}\right)\to0 and \tan^2(x)\to0. Apply L'Hopital's rule:

\displaystyle M = \lim_{x\to0}\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)} \\\\ M = \lim_{x\to0}\dfrac{\dfrac{\tan(x)-x\sec^2(x)}{\tan^2(x)}\times\dfrac{\tan(x)}{x}}{2\tan(x)\sec^2(x)}

Simplify and rewrite this in terms of sin and cos :

\displaystyle M = \lim_{x\to0} \dfrac{\dfrac{\tan(x)-x\sec^2(x)}{\tan^2(x)}\times\dfrac{\tan(x)}{x}}{2\tan(x)\sec^2(x)} \\\\ M= \lim_{x\to0}\dfrac{\sin(x)\cos^3(x) - x\cos^2(x)}{2x\sin^2(x)}

As x\to0, we get another 0/0 indeterminate form. Apply L'Hopital's rule again:

\displaystyle M = \lim_{x\to0} \frac{\sin(x)\cos^3(x) - x\cos^2(x)}{2x\sin^2(x)} \\\\ M = \lim_{x\to0} \frac{\cos^4(x) - 3\sin^2(x)\cos^2(x) - \cos^2(x) + 2x\cos(x)\sin(x)}{2\sin^2(x)+4x\sin(x)\cos(x)}

Recall the double angle identity for sin:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Also, in the numerator we have

cos⁴(<em>x</em>) - cos²(<em>x</em>) = cos²(<em>x</em>) (cos²(<em>x</em>) - 1) = - cos²(<em>x</em>) sin²(<em>x</em>) = -1/4 sin²(2<em>x</em>)

So we can simplify <em>M</em> as

\displaystyle M = \lim_{x\to0} \frac{x\sin(2x) - \sin^2(2x)}{2\sin^2(x)+2x\sin(2x)}

This again yields 0/0. Apply L'Hopital's rule again:

\displaystyle M = \lim_{x\to0} \frac{\sin(2x)+2x\cos(2x)-4\sin(2x)\cos(2x)}{2\sin(2x)+4x\cos(2x)+4\sin(x)\cos(x)} \\\\ M = \lim_{x\to0} \frac{\sin(2x) + 2x\cos(2x) - 2\sin(4x)}{4\sin(2x)+4x\cos(2x)}

Once again, this gives 0/0. Apply L'Hopital's rule one last time:

\displaystyle M = \lim_{x\to0}\frac{2\cos(2x)+2\cos(2x)-4x\sin(2x)-8\cos(4x)}{8\cos(2x)+4\cos(2x)-8x\sin(2x)} \\\\ M = \lim_{x\to0} \frac{4\cos(2x)-4x\sin(2x)-8\cos(4x)}{12\cos(2x)-8x\sin(2x)}

Now as x\to0, the terms containing <em>x</em> and sin(<em>nx</em>) all go to 0, and we're left with

M = \dfrac{4-8}{12} = -\dfrac13

Then the original limit is

L = \exp(M) = e^{-1/3} = \boxed{\dfrac1{\sqrt[3]{e}}}

You might be interested in
What is the value of -16?<br> A. -4<br> B. -4i<br> C. 4i<br> D. 4;2
hammer [34]

Answer:

B

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Factor the following expression.<br> x4 – 3x2 - 4
Liono4ka [1.6K]
(x2 +1) (x2-4) (mark as brainiest)
7 0
3 years ago
#26 please PLEASE EXPLAIN
Amiraneli [1.4K]
25 miles and 5 miles because you only multiply two sides to find the area 25•5=125
3 0
4 years ago
Read 2 more answers
50 pts please help asap (:
andriy [413]

Answer:

d. 8 units

Step-by-step explanation:

If AC = 16 units then the length of CB is 8 units because DB is perpendicular bisector from the centre of circle.

3 0
3 years ago
CAN SOMEONE HELP PLEASE???
DanielleElmas [232]

Answer:he will save 100 $

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • What are the zeros of the quadratic function f(x) = 2x2 + 16x – 9?
    6·2 answers
  • 2 out of 3 dogs weigh less than 20 pounds. What is the decimal equivalent for the number of dogs weighing under 20 pounds
    12·1 answer
  • Use the Distributive Property to simplify.<br> -(5t+8p+13cw)
    6·2 answers
  • Find the measures of "a” and "2a" in the figure,
    10·1 answer
  • Cuál es el valor de la siguiente expresión x=-3<br> -3 (5x+4x+1) +2 (x -5)
    9·1 answer
  • Whats the first step in evaluating this expression? <br><br> 3 x [9 - (4+2) ÷ 2]
    5·1 answer
  • PLEASE HELP I NEED TO TURN THIS IN SOON
    5·2 answers
  • Help me answer to meet any Anime you want <br> This is 50 points explain and help answer
    13·1 answer
  • Express 350 as a product of prime factors.<br>step by step explanation​
    15·1 answer
  • The measure of angle A of a triangle is twice the measure of angle B. The measure of angle C is twice the measure of angle A. Wr
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!