Answer:
It would take 19 hours and 36 minutes until there are 1040 bacteria present.
Step-by-step explanation:
Given that in a lab experiment, 610 bacteria are placed in a petri dish, and the conditions are such that the number of bacteria is able to double every 23 hours, to determine how long would it be, to the nearest tenth of an hour, until there are 1040 bacteria present, the following calculation must be performed:
610X = 1040
X = 1040/610
X = 1.7049
2 = 23
1.7049 = X
1.7049 x 23/2 = X
39.2131 / 2 = X
19.6 = X
100 = 60
60 = X
60 x 60/100 = X
36 = X
Therefore, it would take 19 hours and 36 minutes until there are 1040 bacteria present.
Answer:
1.74% probability that the commute takes more than 32 minutes.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

a.What is the probability that the commute takes more than 32 minutes?
This is 1 subtracted by the pvalue of Z when X = 32. So:



has a pvalue of 0.9826.
So there is a 1-0.9826 = 0.0174 = 1.74% probability that the commute takes more than 32 minutes.