Solve for x: x^2+4x-5=16x
first take 16x from both sides of the equation
x²-12x-5=0
now we have a quadratic. we can solve it by using the quadratic formula
x=-b plus or minus the square root of b²-4ac all divided by 2a
where a=1, b=-12 and c=-5
plug these numbers into the formula
x=12 plus or minus the square root of 144-4x1x-5 all divided by 2
<span>x=12 plus or minus the square root of 164 all divided by 2
or in decimal form </span>x = {12.403124237, -0.403124237}
Answers:
Part 1 (the ovals)
Domain = {-6,-1,1,5,7}
Range = {-4,-1,2,4}
-------------------
Part 2 (the table)
Domain = {1,-3,-2}
Range = {-2,5,1}
-------------------
Part 3 (the graph)
Domain = {1, 2, 3, 4, 5, 6}
Range = {-1, 0, 1, 2, 3, 6}
===============================================
Explanation:
Part 1 (the ovals)
The domain is the set of input values of a function. The input oval is the one on the left.
All we do is list the numbers in the input oval to get this list: {-6,-1,1,5,7}
The curly braces tell the reader that we're talking about a set of values.
So this is the domain.
The range is the same way but with the output oval on the right side
List those values in the right oval and we have {-4,-1,2,4}
Which is the range. That's all there is to it.
------------------------------
Part 2 (The tables)
Like with the ovals in part 1, we simply list the input values. The x values are the input values. Notice how this list is on the left side to indicate inputs.
So that's why the domain is {1, -3, -2}. Optionally you can sort from smallest to largest if you want. Doing so leads to {-3, -2, 1}
The range is {-2,5,1} for similar reasons. Simply look at the y column
Side Note: we haven't had to do it so far, but if we get duplicate values then we must toss them.
------------------------------
Part 3 (the graph)
Using a pencil, draw vertical lines that lead from each point to the x axis. You'll notice that you touch the x axis at the following numbers: 1, 2, 3, 4, 5, 6
So the domain is the list of those x values (similar to part 2) and it is {1, 2, 3, 4, 5, 6}
Erase your pencil marks from earlier. Draw horizontal lines from each point to the y axis. The horizontal lines will arrive at these y values: -1, 0, 1, 2, 3, 6
So that's why the range is {-1, 0, 1, 2, 3, 6}
9514 1404 393
Answer:
maximum difference is 38 at x = -3
Step-by-step explanation:
This is nicely solved by a graphing calculator, which can plot the difference between the functions. The attached shows the maximum difference on the given interval is 38 at x = -3.
__
Ordinarily, the distance between curves is measured vertically. Here that means you're interested in finding the stationary points of the difference between the functions, along with that difference at the ends of the interval. The maximum difference magnitude is what you're interested in.
h(x) = g(x) -f(x) = (2x³ +5x² -15x) -(x³ +3x² -2) = x³ +2x² -15x +2
Then the derivative is ...
h'(x) = 3x² +4x -15 = (x +3)(3x -5)
This has zeros (stationary points) at x = -3 and x = 5/3. The values of h(x) of concern are those at x=-5, -3, 5/3, 3. These are shown in the attached table.
The maximum difference between f(x) and g(x) is 38 at x = -3.
Answer:
Step-by-step explanation:
Calculate the volume of a cone by its base and height with the equation volume = 1/3 * base * height. You can calculate the height of a cone from its volume by reversing this equation. Triple the volume amount. For this example, the volume is 100.