The scale will continuously go up per section, 2:60, 3:90.
Step-by-step explanation:
<u>Step 1: List out all of the formulas for the trigonometric functions
</u>
<em>sin(x) </em>= opposite/hypotenuse
<em>cos(x) </em>= adjacent/hypotenuse
<em>tan(x) </em>= opposite/adjacent
<u>Step 2: Find the following expression that has a value of 2/5
</u>
sin(B) = opposite/hypotenuse = ?/5 is FALSE
cos(B) = adjacent/hypotenuse = 2/5 is TRUE
tan(B) = opposite/adjacent = ?/2 is FALSE
Answer: The correction expression that has a value of 2/5 is option B
Answer:
The dimension of the base of the Rectangle Pyramid is Length = 10 and Width = 8/3
Step-by-step explanation:
Given
Rectangle Pyramid
Base Length = 3x + 1
Base Width = x
Height = 12
Volume = 96
Required
Dimension of the base of the pyramid
Given that the volume of the pyramid is ⅓ of the base area * the height.
This is represented mathematical as
Volume = ⅓ * base area * height.
Where
Base area = width * length
Base area = (3x + 1) * x
Base area = 3x² + x.
So,
Volume becomes
Volume = ⅓ * (3x² + x) * 12.
Volume = (3x² + x) * 4
Substitute 96 for volume
96 = (3x² + x) * 4
Divide both sides by 4
96/4 = (3x² + x) * 4/4
24 = 3x² + x
Subtract 24 fr both sides
24 - 24 = 3x² + x - 24
0 = 3x² + x - 24
3x² + x - 24 = 0
Expand
3x² + 9x - 8x - 24 = 0
Factorize
3x(x + 3) - 8(x + 3) = 0
(3x - 8)(x + 3) = 0
3x - 8 = 0 or x + 3 = 0
3x = 8 or x = -3
x = 8/3 or x = -3
Recall that
Length = 3x + 1
Width = x
For any of the above expression, x can't be less than 0; so, x = -3 can't be considered.
Substitute x = 8/3
Length = 3x + 1
Length = 3(8/3) + 1
Length = 8 + 1
Length = 9
Width = x
Width = 8/3
Hence, the dimension of the base of the Rectangle Pyramid is Length = 10 and Width = 8/3
Now, the cosecant of θ is -6, or namely -6/1.
however, the cosecant is really the hypotenuse/opposite, but the hypotenuse is never negative, since is just a distance unit from the center of the circle, so in the fraction -6/1, the negative must be the 1, or 6/-1 then.
we know the cosine is positive, and we know the opposite side is -1, or negative, the only happens in the IV quadrant, so θ is in the IV quadrant, now

recall that

therefore, let's just plug that on the remaining ones,

now, let's rationalize the denominator on tangent and secant,
The answer is 7/4 I added my work there sorry if it’s kinda messy