Answer:
(21x^4y + 7x^3y^2 − 28x^2y^2) ÷ 7xy = 3x^3 + x^2y − 4xy
Step-by-step explanation:
(9xy^2 + 12x^3y^4 − 6x) ÷ 3x = 4x^2y^4 + 3y^2 − 2 (False: 9xy^2:3x=3y^2)
25x^4y^2 + 10x^2y^4 − 15y) ÷ 5y = 5x^4y + 2x^3y^2 − 3 (False: 10x^2y^4:5y=2x^2y^3)
(16x^4y^2 + 24x^2y^2 − 8xy^2) ÷ 4xy = 4x^4y + 6xy− 2y(False: 16x^4y^2:4xy=4x^3y)
(21x^4y + 7x^3y^2 − 28x^2y^2) ÷ 7xy = 3x^3 + x^2y − 4xy (True)
Hello.
C) x=4π/3
The variable x in the cotangent argument has a unit coefficient, so the period is π, just as it is in the parent function cot(x).
Can you graph y = cot(x)? By subtracting the constant π/6 from the argument, that graph is translated to the right by π/6. Just as with cot(x), it is decreasing everywhere.
Have a nice day
Answer:
b. -3
Step-by-step explanation:
i hope this helps :)
Answer:
A=(1/2)BxH
10x6=60m
Answer:
So the 1st, 2nd, & 3rd graphs all show continuous data. (I'll attach an image to show which ones I'm talking about)
Explanation:
This is because with continuous data, all points need to connect and it needs to continue. The 4th graph (with just points) would be discrete.
I hope this helps!! :)
Sorry I took so long...