The inequality would be 0.05m + 13 >= 63.15. Solving:
0.05m >= 50.15
m >= 1003 minutes
Therefore at least 1003 minutes were consumed to be billed $63.15 or more.
Hope this helps.
Answer:
he shortest distance from the point E to a side of square ABCD is 0.293
Step-by-step explanation:
The question parameters are
Shape of figure ABCD = Square
Point E lies on the diagonal line AC
The length of the segment AE = 1
Therefore, we have;
Length of AC = √(AB² + CD²) = √(1² + 1²) = √2
Hence, the point E is closer to the point C and the closest distance to a side from E is the perpendicular from the point E to BC at point E' or to CD at poit E'' which is found as follows;
AC is a bisector of ∠DAB, hence;
∠DAC = 45° = ∠CAE'
EE' = EC × cos(45°)
EC = AC - AE = √2 - 1
Therefore;
EE' = (√2 - 1) × cos(45°) = (√2 - 1) × (√2)/2 = 1 - (√2)/2 = 0.293
Hence, the shortest distance from the point E to a side of square ABCD = 0.293.
Answer:
What is it?
Step-by-step explanation:
Answer:
is that even a real equation?
Answer:
(9, 3)
Step-by-step explanation:
When a point is rotated 180 degrees, you take the opposite of the coordinates.
i.e (5, 6) ---> (-5, -6)