Answer:
8190 ways
Step-by-step explanation:
Given
![Teachers = 6](https://tex.z-dn.net/?f=Teachers%20%3D%206)
![Students = 15](https://tex.z-dn.net/?f=Students%20%3D%2015)
Selection
![Students = 4](https://tex.z-dn.net/?f=Students%20%3D%204)
![Teachers = 5](https://tex.z-dn.net/?f=Teachers%20%3D%205)
Required
Number of ways of selection
4 students can be selected from 15 students in:
![Students= ^{15}C_4](https://tex.z-dn.net/?f=Students%3D%20%5E%7B15%7DC_4)
Similarly.
5 teachers can be selected from 6 teachers in:
![Teachers= ^{6}C_5](https://tex.z-dn.net/?f=Teachers%3D%20%5E%7B6%7DC_5)
So, the required number of selection is:
![Selection = ^{15}C_4 * ^6C_5](https://tex.z-dn.net/?f=Selection%20%3D%20%5E%7B15%7DC_4%20%2A%20%5E6C_5)
Apply combination formula:
![Selection = \frac{15!}{(15-4)!4!} * \frac{6!}{(6-5)!5!}](https://tex.z-dn.net/?f=Selection%20%3D%20%5Cfrac%7B15%21%7D%7B%2815-4%29%214%21%7D%20%2A%20%5Cfrac%7B6%21%7D%7B%286-5%29%215%21%7D)
![Selection = \frac{15!}{11!4!} * \frac{6!}{1!5!}](https://tex.z-dn.net/?f=Selection%20%3D%20%5Cfrac%7B15%21%7D%7B11%214%21%7D%20%2A%20%5Cfrac%7B6%21%7D%7B1%215%21%7D)
![Selection = \frac{15*14*13*12*11!}{11!*4*3*2*1} * \frac{6*5!}{1*5!}](https://tex.z-dn.net/?f=Selection%20%3D%20%5Cfrac%7B15%2A14%2A13%2A12%2A11%21%7D%7B11%21%2A4%2A3%2A2%2A1%7D%20%2A%20%5Cfrac%7B6%2A5%21%7D%7B1%2A5%21%7D)
![Selection = \frac{15*14*13*12}{4*3*2*1} * \frac{6}{1}](https://tex.z-dn.net/?f=Selection%20%3D%20%5Cfrac%7B15%2A14%2A13%2A12%7D%7B4%2A3%2A2%2A1%7D%20%2A%20%5Cfrac%7B6%7D%7B1%7D)
![Selection = \frac{32760}{24} * 6](https://tex.z-dn.net/?f=Selection%20%3D%20%5Cfrac%7B32760%7D%7B24%7D%20%2A%206)
![Selection = 1365 * 6](https://tex.z-dn.net/?f=Selection%20%3D%201365%20%2A%206)
![Selection = 8190](https://tex.z-dn.net/?f=Selection%20%3D%208190)
Answer: u=7
Step-by-step explanation:
-6= -2u+4(u-5)
-6= -2u+4u-20
-6= 2u-20
14= 2u
7=u
5(x-3)-x =
Multiply Everything In The Parentheses By 5
5x-15-x
Divide 6 by 1/3. I don't know what you are asking.