So 2% is 2/100. That would be 0.02.
Answer:
We conclude that If Tawnee increases the length and width of the playground by a scale factor of 2, the perimeter of the new playground will be twice the perimeter of the original playground.
Step-by-step explanation:
We know that the perimeter of a rectangle = 2(l+w)
i.e.
P = 2(l+w)
Here
Given that the length and width of the playground by a scale factor of 2
A scale factor of 2 means we need to multiply both length and width by 2.
i.e
P = 2× 2(l+w)
P' = 2 (2(l+w))
= 2P ∵ P = 2(l+w)
Therefore, we conclude that If Tawnee increases the length and width of the playground by a scale factor of 2, the perimeter of the new playground will be twice the perimeter of the original playground.
We know that
If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment. (Intersecting Secant-Tangent Theorem)
so
ST²=RT*QT
RT=7 in
QT=23+7-----> 30 in
ST²=7*30-----> 210
ST=√210-----> 14.49 in
the answer is
RT=14.49 in
The simplified form is C .
Answer:
I got 32.
Step-by-step explanation:
I used the Pythagorean theorem to find the lengths of the width and length. The length between (-1, 4) and (3, 3) was approximately 4 in. The distance between (-1, 4) and (-3, -4) was approximately 8 in. I then used those numbers to find the perimeter ((2*4)+(2*8))