Answer:
x less than or equal to 86
Step-by-step explanation:
this is because x represents the number of people since the bus cant hold anymore than 86 you can only have 86 or less people on the bus
Step-by-step explanation:
g(x) = 3x - 2
g(-4) = 3(-4) - 2
= -12 -2
= -14
Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: "Omar works as a tutor for $15 an hour and as a waiter for $7 an hour. This month, he worked a combined total of 83 hours at his two jobs. Let "t" be the number of hours Omar worked as a tutor this month. Write an expression for the combined total dollar amount he earned this month."</h3><h3 />
Let be "t" the number of hours Omar worked as a tutor this month and "w" the number of hours Omar worked as a waiter this month.
Based on the data given in the exercise, you know that Omar worked a combined total of 83 hours this month.
Then, you can represent the number of hours he worked as a waiter this month with this equation:

Since he earns $15 per hour working has a tutor and $7 per hour working as a waiter, you can write the following expresion to represent the total money earned:

Since
, you can substitute it into the expression and then simplify it in order to find the final expression that represents the total amount of money Omar earned this month.
This is:

The maximum height the ball achieves before landing is 682.276 meters at t = 0.
<h3>What are maxima and minima?</h3>
Maxima and minima of a function are the extreme within the range, in other words, the maximum value of a function at a certain point is called maxima and the minimum value of a function at a certain point is called minima.
We have a function:
h(t) = -4.9t² + 682.276
Which represents the ball's height h at time t seconds.
To find the maximum height first find the first derivative of the function and equate it to zero
h'(t) = -9.8t = 0
t = 0
Find second derivative:
h''(t) = -9.8
At t = 0; h''(0) < 0 which means at t = 0 the function will be maximum.
Maximum height at t = 0:
h(0) = 682.276 meters
Thus, the maximum height the ball achieves before landing is 682.276 meters at t = 0.
Learn more about the maxima and minima here:
brainly.com/question/6422517
#SPJ1