You would use, Order of Operations, A.K.A PEMDAS.
Parenthesis, Exponets, Multiplication, Division, Addition, Subtraction
Follow that order and you do the work yourself, you would never learn by asking other's for the answer. >:)
From: Dark Angel
Step by step I’m not sure sorry dog
Answer:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
a) ![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
b) ![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Step-by-step explanation:
For this case we have the following function:

We can solve for x like this. First we can reorder the expression like this:



Now we can apply natura log on both sids and we got:
![ln[\frac{40000}{8000-P} -5] = ln e^{-0.002x}](https://tex.z-dn.net/?f=%20ln%5B%5Cfrac%7B40000%7D%7B8000-P%7D%20-5%5D%20%3D%20ln%20e%5E%7B-0.002x%7D)
![ln [\frac{5P}{8000-P}] = -0.002x](https://tex.z-dn.net/?f=%20ln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%20%3D%20-0.002x%20)
And if we solve for x we got:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
Part a
For this case we can replace P = 200 and see what we got for x like this:
![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
Part b
For this case we can replace P = 800 and see what we got for x like this:
![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Answer:
Graph B
Step-by-step explanation:
Linear functions are straight lines.