15.40 becauwe 6 makes 9to 0 and it makes 3 to 4
Answer:
0.999987
Step-by-step explanation:
Given that
The user is a legitimate one = E₁
The user is a fraudulent one = E₂
The same user originates calls from two metropolitan areas = A
Use Bay's Theorem to solve the problem
P(E₁) = 0.0131% = 0.000131
P(E₂) = 1 - P(E₁) = 0.999869
P(A/E₁) = 3% = 0.03
P(A/E₂) = 30% = 0.3
Given a randomly chosen user originates calls from two or more metropolitan, The probability that the user is fraudulent user is :




= 0.999986898 ≈ 0.999987
Answer:
1) (x + 3)(3x + 2)
2) x= +/-root6 - 1 by 5
Step-by-step explanation:
3x^2 + 11x + 6 = 0 (mid-term break)
using mid-term break
3x^2 + 9x + 2x + 6 = 0
factor out 3x from first pair and +2 from the second pair
3x(x + 3) + 2(x + 3)
factor out x+3
(x + 3)(3x + 2)
5x^2 + 2x = 1 (completing squares)
rearrange the equation
5x^2 + 2x - 1 = 0
divide both sides by 5 to cancel out the 5 of first term
5x^2/5 + 2x/5 - 1/5 = 0/5
x^2 + 2x/5 - 1/5 = 0
rearranging the equation to gain a+b=c form
x^2 + 2x/5 = 1/5
adding (1/5)^2 on both sides
x^2 + 2x/5 + (1/5)^2 = 1/5 + (1/5)^2
(x + 1/5)^2 = 1/5 + 1/25
(x + 1/5)^2 = 5 + 1 by 25
(x + 1/5)^2 = 6/25
taking square root on both sides
root(x + 1/5)^2 = +/- root(6/25)
x + 1/5 = +/- root6 /5
shifting 1/5 on the other side
x = +/- root6 /5 - 1/5
x = +/- root6 - 1 by 5
x = + root6 - 1 by 5 or x= - root6 - 1 by 5
Based on the graph given, the option that will show the same amplitude as function m is graph D.
<h3>Which graphed function is this about?</h3>
The cosine function is seen as:
f(x) = A*cos(kx) + M
And the functions are:
- A stands for amplitude,
- k is angular frequency,
- M is the midline.
When the function is m(x) = -2*cos(x+π).
The absolute value of the amplitude will be 2*|-2| = 4
Therefore, the option that can have the requirement above is graph D.
Learn more about cosine from
brainly.com/question/23563998
#SPJ4