We are given a line with the following data:
r-value = 0.657 (r)
standard deviation of x-coordinates = 2.445 (Sx)
standard deviation of y-coordinates = 9.902 (Sy)
We are asked to find the slope of the line up to 3 decimal places.
To find the slope of the line, based on the data that we have, we can use this formula:
slope, b = r * (Sy / Sx)
substitute the values to the formula:
b = 0.657 * ( 9.902 / 2.445 )
Solve for the b.
Therefore, the slope of the line is
b = 2.66078, round off to three decimal places:
b = 2.661 is the slope of the line.
Answer:
a) False
b) False
c) True
d) False
e) False
Step-by-step explanation:
a. A single vector by itself is linearly dependent. False
If v = 0 then the only scalar c such that cv = 0 is c = 0. Hence, 1vl is linearly independent. A set consisting of a single vector v is linearly dependent if and only if v = 0. Therefore, only a single zero vector is linearly dependent, while any set consisting of a single nonzero vector is linearly independent.
b. If H= Span{b1,....bp}, then {b1,...bp} is a basis for H. False
A sets forms a basis for vector space, only if it is linearly independent and spans the space. The fact that it is a spanning set alone is not sufficient enough to form a basis.
c. The columns of an invertible n × n matrix form a basis for Rⁿ. True
If a matrix is invertible, then its columns are linearly independent and every row has a pivot element. The columns, can therefore, form a basis for Rⁿ.
d. In some cases, the linear dependence relations among the columns of a matrix can be affected by certain elementary row operations on the matrix. False
Row operations can not affect linear dependence among the columns of a matrix.
e. A basis is a spanning set that is as large as possible. False
A basis is not a large spanning set. A basis is the smallest spanning set.