Answer: The correct method would be - to collect the gas in an inverted graduated cylinder. Explanation: Place the aquatic plant under the mouth of the graduated cylinder and gather the gas by the water displacement that is delivered by the cycle of photosynthesis. At that point measure, the volume of gas gathered at different times. An individual could consider the impact of temperature, the measure of light, and the accessibility of supplements as components that may influence the pace of gas creation.
The dorsal surface in for legged animals is called superior
Answer:
d. less than 100% of the energy captured from sunlight is transformed into potential energy in the form of a hydrogen ion gradient and then into potential energy in the form of covalent bonds
Explanation:
Photosynthesis is process utilized by plants, several bacteria and protists to convert the light energy to chemical energy. So they utilize the photosynthesis as the powerhouse for the energy production. Heterotrophs like human that cannot synthesize their own food, use this converted form of energy by autotrophs.
During the light reaction of photosynthesis the photons from light are absorbed by photosystem I and II. These photons excites the electrons which flow through the electron transport chain from higher potential to lower potential. These electrons release the energy while moving from higher potential to lower potential which is utilized by H+ pump to pump the H+ to lumen of plastids from stroma and of course not the 100% energy is utilized some of the energy dissipates. . So this process causes the accumulation of high potential H+ ions across the membrane. These H+ ions are utilized for the production of ATP by ATP synthase complex when they flow back to lower potential across the membrane through ATP synthase complex.
The ATP and NADPH produced from light reaction are utilized to combine carbon molecules during dark reaction. The covalent bond is used to combine the carbon molecules and we know that combining carbon molecules stores energy in the form of covalent bond.
The right answer to this question is option D. Carotenoids are categorized into two major divisions: carotenes and beta carotenes
First, let's check option A, it says that the carotenoids include red, orange and yellow pigments, that's true, we can check that on lab for example, a vegetable that can be mentioned here are carrots, it has lots of this and it's very healthy too, and remember, there isn't a single animal that can produce carotenoids, so they need to grab it from nature.
The second option, B. says that sometimes carotenoids are sometimes called as acessory pigments, that's true too, some studies consider them acessory pigments, so, they're not alone there, there are different kinds of pigments that can be on that plant, and they're also very important for the animals. Option C refers to beta carotene as the most abundant carotene in plants, that's true too, we can also find other kinds of carotenoids on plants, but this one as it's seen in lab, is the most common one. The last one, D, isn't true, the two major divisions are: Xanthophylls and Carotenoids, beta carotenoids are a type of carotenoids, not a different group.
Answer:
substitution - a base was changed
Explanation:
The nucleotide sequence CTT was changed to the sequence CAT. The T was substituted with an A. This changed the encoded amino acid from Glu to Val.
An insertion is where an additional base is added (e.g. if the sequence changed from CTT to CATT)
A deletion is when a base is lost (e.g. if the sequence changed from CTT to CT)