Need more information on the choice, please provide
If you want the answer in point slope form then,
y-y1 = m(x-x1)
y-c = m(x-a)
---------------------------------------
If you want the answer in slope intercept form, then solve for y
y-c = m(x-a)
y-c = mx-ma
y-c+c = mx-ma+c
y = mx-ma+c
y = mx+c-ma
y = mx+(c-ma)
For this answer in slope intercept form the slope is m and the y intercept is c-ma
---------------------------------------
If you want the answer in standard form, then get the variable terms to the left side. Have the constant terms on the right side.
y = mx+c-ma
y-mx = mx+c-ma-mx
-mx+y = c-ma
Optionally you can multiply both sides by -1 to get mx-y = -c+ma but it will depend on your book if this step is carried out or not.
Answer:
None of the above
Step-by-step explanation:
=4+2y+7
x+8=(7x)+
(2y)+(4+8)=7x+2y+12
Answer:
I see this
"Which relation is a function?
A {(-3,4),(-3,8),(6,8)}
B {(6,4),(-3,8),(6,8)}
C {(-3,4),(3,-8),(3,8)}
D {(-3,4),(3,5),(-3,8)}"
So the answer is none of these.
Please make sure you have the correct problem.
Step-by-step explanation:
A set of points is a function if you have all your x's are different. That is, all the x's must be distinct. There can be no value of x that appears more than once.
If you look at choice A, this is not a function because the first two points share the same x, which is -3.
Choice B is not a function because the first and last point share the same x, which is 6.
Choice C is not a function because the last two points share the same x, which is 3.
Choice D is not a function because the first and last choice share the same x, which is -3.
None of your choices show a function.
If you don't have that choice you might want to verify you written the problem correctly.
This is what I see:
"Which relation is a function?
A {(-3,4),(-3,8),(6,8)}
B {(6,4),(-3,8),(6,8)}
C {(-3,4),(3,-8),(3,8)}
D {(-3,4),(3,5),(-3,8)}"
J because this is a quadratic function which is shaped like a u upward