If x is a real number such that x3 + 4x = 0 then x is 0”.Let q: x is a real number such that x3 + 4x = 0 r: x is 0.i To show that statement p is true we assume that q is true and then show that r is true.Therefore let statement q be true.∴ x2 + 4x = 0 x x2 + 4 = 0⇒ x = 0 or x2+ 4 = 0However since x is real it is 0.Thus statement r is true.Therefore the given statement is true.ii To show statement p to be true by contradiction we assume that p is not true.Let x be a real number such that x3 + 4x = 0 and let x is not 0.Therefore x3 + 4x = 0 x x2+ 4 = 0 x = 0 or x2 + 4 = 0 x = 0 orx2 = – 4However x is real. Therefore x = 0 which is a contradiction since we have assumed that x is not 0.Thus the given statement p is true.iii To prove statement p to be true by contrapositive method we assume that r is false and prove that q must be false.Here r is false implies that it is required to consider the negation of statement r.This obtains the following statement.∼r: x is not 0.It can be seen that x2 + 4 will always be positive.x ≠ 0 implies that the product of any positive real number with x is not zero.Let us consider the product of x with x2 + 4.∴ x x2 + 4 ≠ 0⇒ x3 + 4x ≠ 0This shows that statement q is not true.Thus it has been proved that∼r ⇒∼qTherefore the given statement p is true.
ANSWER
A) 9.4 * 10^-8, 9.25 * 10^-6, 2.5 * 10^3, 7* 10^3
EXPLANATION
The numbers are given in standard form.
The first criteria we will use to order them is the exponents.
The bigger the exponents the bigger the number.
The second criteria is that, if the exponents of any two numbers are the same, then we use the numbers multiplying the powers of 10 to order.

The correct choice is A.
Answer:
(6-2)/4
Step-by-step explanation:
Make sure you have the parenthesis
Answer:
There is no mode in this sequence.
Step-by-step explanation:
The mode is the most frequent number.
In your case, we can analyze the set:
156, 157, 158, 159, 160, 161, 162, 163, 164, 165
Since these are all straightforward consecutive integers, there are no recurring numbers.
Thus, there is no mode in this sequence.