Using sum and difference identities from trigonometric identities shows that; Asin(ωt)cos(φ) +Acos(ωt)sin(φ) = Asin(ωt + φ)
<h3>How to prove Trigonometric Identities?</h3>
We know from sum and difference identities that;
sin (α + β) = sin(α)cos(β) + cos(α)sin(β)
sin (α - β) = sin(α)cos(β) - cos(α)sin(β)
c₂ = Acos(φ)
c₁ = Asin(φ)
The Pythagorean identity can be invoked to simplify the sum of squares:
c₁² + c₂² =
(Asin(φ))² + (Acos(φ))²
= A²(sin(φ)² +cos(φ)²)
= A² * 1
= A²
Using common factor as shown in the trigonometric identity above for Asin(ωt)cos(φ) +Acos(ωt)sin(φ) gives us; Asin(ωt + φ)
Complete Question is;
y(t) = distance of weight from equilibrium position
ω = Angular Frequency (measured in radians per second)
A = Amplitude
φ = Phase shift
c₂ = Acos(φ)
c₁ = Asin(φ)
Use the information above and the trigonometric identities to prove that
Asin(ωt + φ) = Asin(ωt)cos(φ) +Acos(ωt)sin(φ)
Read more about Trigonometric Identities at; brainly.com/question/7331447
#SPJ1
Answer:
Its potential energy is changed to kinetic energy
Explanation:
Answer:
we should be very care and love with them.Then only they will trust us.We should stay with them very happily and lifelong. we should be responsible to take care of our family
Explanation:
<em><u>HOPE </u></em><em><u>I </u></em><em><u>THINK </u></em><em><u>HELPS</u></em><em><u> </u></em><em><u>YOU</u></em>
Divider, instrument for measuring, transferring, or marking off distances, consisting of two straight adjustable legs hinged together and ending in sharp points. (got the answer from google hehe)