Given:
Sample Mean <span>= 30<span>
Sample size </span><span><span><span>= 1000</span></span><span>
</span></span></span>Population Standard deviation or <span><span><span>σ<span>=2</span></span><span>
</span></span>Confidence interval </span><span>= 95%</span>
to compute for the confidence interval
Population Mean or <span>μ<span><span>= sample mean ± (</span>z×<span>SE</span>)</span></span>
<span><span>where:</span></span>
<span><span>SE</span>→</span> Standard Error
<span><span>SE</span>=<span>σ<span>√n</span>= 30</span></span>√1000=0.9486
Critical Value of z for 95% confidence interval <span>=1.96</span>
<span>μ<span>=30±<span>(1.96×0.9486)</span></span><span>
</span></span><span>μ<span>=30±1.8594</span></span>
Upper Limit
<span>μ <span>= 30 + 1.8594 = 31.8594</span></span>
Lower Limit
<span>μ <span>= 30 − 1.8594 = <span>28.1406</span></span></span>
<span><span><span>
</span></span></span>
<span><span><span>answer: 28.1406<u<31.8594</span></span></span>
7 + 3 = 10 those are the 2 addens
Answer:
Explanation:
<u>1. Given equation:</u>

<u>2. Given intensity:</u>

<u>3. Decibels</u>

Answer:
Point (1,8)
Step-by-step explanation:
We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.
When a point divides any segment internally in the ratio m:n, the formula is:
![[x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
Let us substitute coordinates of point P and Q as:
,




![[x=\frac{4}{4},y=\frac{32}{4}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B4%7D%7B4%7D%2Cy%3D%5Cfrac%7B32%7D%7B4%7D%5D)
Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.