Answer:
y+6
Step-by-step explanation:
If we increase x then we need to do it with y by the same number.
We can not increase with different numbers.
Our rule of translation now is (x+6,y+6)
(x,y)=(x+6,y+6)
We have A(-6,2) then A'(0,8)
B(-5,5) then B'(1,11)
Answer:
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
Step-by-step explanation:
![\frac{3}{2} [ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%20%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
ln(m/n)= lnm - ln(n)
![\frac{3}{2}[ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
![\frac{3}{2}[ln \frac{x(x^2 + 1)}{(x + 1)}]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D)
3/2 is before ln. so we move the fraction 3/2 to the exponent
as per log property we move the fraction to the exponent
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
Answer:
y=-x-1
Step-by-step explanation:
Answer: C
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
I put the equation in Desmos graphing calculator