Answer and Explanation:
I'm assuming you mean the "Additive property of equality".
The additive property of equality states if the same value amount is added to both sides of an expression or equation, it will remain equal.
Similarly, the additive property of inequalities states if the same value amount is added to both sides of an inequality, it will remain true.
Answer:
A = 3
B = 1
C = 2
D = 10
E = 2
F = Not listed
G = 1
Step-by-step explanation:
![\sqrt[3]{270x^5y^7} =\sqrt[3]{27*10x^5y^7}=3xy^2\sqrt[3]{10x^2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B270x%5E5y%5E7%7D%20%3D%5Csqrt%5B3%5D%7B27%2A10x%5E5y%5E7%7D%3D3xy%5E2%5Csqrt%5B3%5D%7B10x%5E2y%7D)
P=2
Work:
<span><span><span>7p</span>−<span>(<span><span>3p</span>+4</span>)</span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span>7p</span>−<span>(<span><span>3p</span>+4</span>)</span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span>7p</span>+<span><span>−1</span><span>(<span><span>3p</span>+4</span>)</span></span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span><span>7p</span>+<span><span>−1</span><span>(<span>3p</span>)</span></span></span>+<span><span>(<span>−1</span>)</span><span>(4)</span></span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span><span><span><span>7p</span>+</span>−<span>3p</span></span>+</span>−4</span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span><span><span><span>7p</span>+</span>−<span>3p</span></span>+</span>−4</span>=<span><span><span><span>(<span>−2</span>)</span><span>(<span>2p</span>)</span></span>+<span><span>(<span>−2</span>)</span><span>(<span>−1</span>)</span></span></span>+10</span></span><span><span><span><span><span><span>7p</span>+</span>−<span>3p</span></span>+</span>−4</span>=<span><span><span>−<span>4p</span></span>+2</span>+10</span></span><span><span><span>(<span><span>7p</span>+<span>−<span>3p</span></span></span>)</span>+<span>(<span>−4</span>)</span></span>=<span><span>(<span>−<span>4p</span></span>)</span>+<span>(<span>2+10</span>)</span></span></span><span><span><span>4p</span>+<span>−4</span></span>=<span><span>−<span>4p</span></span>+12</span></span><span><span><span>4p</span>−4</span>=<span><span>−<span>4p</span></span>+12</span></span><span><span><span><span>4p</span>−4</span>+<span>4p</span></span>=<span><span><span>−<span>4p</span></span>+12</span>+<span>4p</span></span></span><span><span><span>8p</span>−4</span>=12</span><span><span><span><span>8p</span>−4</span>+4</span>=<span>12+4</span></span><span><span>8p</span>=16</span><span><span><span><span><span>8p</span>8</span></span></span>=<span><span><span>168</span></span></span></span><span>p=<span>2
Hope this helps:)</span></span>
Answer:
schläfli symbol {50}, t{25}
Coxeter diagram
Symmetry group Dihedral (D50), order 2×50
Internal angle (degrees) 172.8°
5 more rows
Step-by-step explanation:
Answer:
4,5,27
Problem:
Boris chose three different numbers.
The sum of the three numbers is 36.
One of the numbers is a perfect cube.
The other two numbers are factors of 20.
Step-by-step explanation:
Let's pretend those numbers are:
.
We are given the sum is 36:
.
One of our numbers is a perfect cube.
where
is an integer.
The other two numbers are factors of 20.
and
where
.

From here I would just try to find numbers that satisfy the conditions using trial and error.






So I have found a triple that works:

The numbers in ascending order is:
