Answer: Choice B) {3, 5, sqrt(34)}
=====================================
Explanation:
We can only have a right triangle if and only if a^2+b^2 = c^2 is a true equation. The 'c' is the longest side, aka hypotenuse. The legs 'a' and 'b' can be in any order you want.
-----------
For choice A,
a = 2
b = 3
c = sqrt(10)
So,
a^2+b^2 = 2^2+3^2 = 4+9 = 13
but
c^2 = (sqrt(10))^2 = 10
which is not equal to 13 from above. Cross choice A off the list.
-----------
Checking choice B
a = 3
b = 5
c = sqrt(34)
Square each equation
a^2 = 3^2 = 9
b^2 = 5^2 = 25
c^2 = (sqrt(34))^2 = 34
We can see that
a^2+b^2 = 9+25 = 34
which is exactly equal to c^2 above. This confirms the answer.
-----------
Let's check choice C
a = 5, b = 8, c = 12
a^2 = 25, b^2 = 64, c^2 = 144
So,
a^2+b^2 = c^2
25+64 = 144
89 = 144
which is a false equation allowing us to cross choice C off the list.
X= 23 degrees
To find this you first add up 124 and 33 which equals 157. Then you would subtract 157 from 180 because all triangles equal 180.
The best answer would be C
Answer:

Step-by-step explanation:




1. YES 2. NO, correct me if im wrong