Answer:
x = 500 yd
y = 250 yd
A(max) = 125000 yd²
Step-by-step explanation:
Let´s call x the side parallel to the stream ( only one side to be fenced )
y the other side of the rectangular area
Then the perimeter of the rectangle is p = 2*x + 2* y ( but only 1 x will be fenced)
p = x + 2*y
1000 = x + 2 * y ⇒ y = (1000 - x )/ 2
And A(r) = x * y
Are as fuction of x
A(x) = x * ( 1000 - x ) / 2
A(x) = 1000*x / 2 - x² / 2
A´(x) = 500 - 2*x/2
A´(x) = 0 500 - x = 0
x = 500 yd
To find out if this value will bring function A to a maximum value we get the second derivative
C´´(x) = -1 C´´(x) < 0 then efectevly we got a maximum at x = 500
The side y = ( 1000 - x ) / 2
y = 500/ 2
y = 250 yd
A(max) = 250 * 500
A(max) = 125000 yd²
Correct answer is 3: 8 (2x + 3y)
So it our equation would be t(5)=5^2+2(5)
25+10=35 :)
Answer:
(a)18
(b)1089
(c)Sunday
Step-by-step explanation:
The problem presented is an arithmetic sequence where:
- First Sunday, a=1
- Common Difference (Every subsequent Sunday), d=7
We want to determine the number of Sundays in the 120 days before Christmas.
(a)In an arithmetic sequence:

Since the result is a whole number, there are 18 Sundays in which Aldsworth advertises.
Therefore, Aldsworth advertised 18 times.
(b)Next, we want to determine the sum of the first 18 terms of the sequence
1,8,15,...

The sum of the numbers of days published in all the advertisements is 1089.
(c)SInce the 120th day is the 18th Sunday, Christmas is on Sunday.