Answer:
1799.08748
Rounded version: 1799
Step-by-step explanation:
Report me if its wrong mark me Brianliest if its right.
Answer:
This is a 30-60-90 right triangle.
<u>The ratio of sides:</u>
<u>Compare with the given values:</u>
- a = 3√3, b = y, c = x
- y = 3√3*√3 = 9
- x = 2*3√3 = 6√3
Answer:
The expected cost is 152
Step-by-step explanation:
Recall that since Y is uniformly distributed over the interval [1,5] we have the following probability density function for Y
if
and 0 othewise. (To check this is the pdf, check the definition of an uniform random variable)
Recall that, by definition

Also, we are given that
. Recall the following properties of the expected value. If X,Y are random variables, then

Then, using this property we have that
.
Thus, we must calculate E[Y] and E[Y^2].
Using the definition, we get that
![E[Y] = \int_{1}^{5}\frac{y}{4} dy =\frac{1}{4}\left\frac{y^2}{2}\right|_{1}^{5} = \frac{25}{8}-\frac{1}{8} = 3](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20%5Cint_%7B1%7D%5E%7B5%7D%5Cfrac%7By%7D%7B4%7D%20dy%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft%5Cfrac%7By%5E2%7D%7B2%7D%5Cright%7C_%7B1%7D%5E%7B5%7D%20%3D%20%5Cfrac%7B25%7D%7B8%7D-%5Cfrac%7B1%7D%7B8%7D%20%3D%203)
![E[Y^2] = \int_{1}^{5}\frac{y^2}{4} dy =\frac{1}{4}\left\frac{y^3}{3}\right|_{1}^{5} = \frac{125}{12}-\frac{1}{12} = \frac{31}{3}](https://tex.z-dn.net/?f=E%5BY%5E2%5D%20%3D%20%5Cint_%7B1%7D%5E%7B5%7D%5Cfrac%7By%5E2%7D%7B4%7D%20dy%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft%5Cfrac%7By%5E3%7D%7B3%7D%5Cright%7C_%7B1%7D%5E%7B5%7D%20%3D%20%5Cfrac%7B125%7D%7B12%7D-%5Cfrac%7B1%7D%7B12%7D%20%3D%20%5Cfrac%7B31%7D%7B3%7D)
Then

Assuming you have log in base 2.
Join logarithms (always):
log2(6-2x)-log2(x) = log2( (6-2x/x) )
Then get rid of it! :)
(6-2x)/x = 2^3=8,
Solve the equation:
6-2x=8x ---> 10x=6 ---> x = 3/5.
A rectangular prism is a figure with congruent polygon bases, connected with lateral faces that are rectangles, so your answer would be rectangular prism! <span />