.hello :
an equation of the circle <span>Center at the w(a,b) and ridus : r is :
(x-a)² +(y-b)² = r²
in this exercice : r = 1
</span><span>The points (-18,15) and (-20,15) lie on a circle with a radius of 1:
</span>(-18-a)²+(15-b)² = 1 ....(1)
(-20-a)² +(15-b)² = 1 ....(2)
solve this system :
(1) -(2) : (-18-a)² - (-20-a)² =0
(-18-a)² =(-20-a)² =0
( -18-a = -20-a) or (-18-a = - (-20-a))
1 ) ( -18-a = -20-a) no solution confused : -18=-20
2 ) -18-a =20+a
-2a =38
a = -19
subst in (1) :(-18+19)²+(15-b)² =1
(15-b)² = 0.... 15-b = 0 .... b = 15
the center is :w(-19,15)
The answer for 378 x 9 = 3402
Answer:
2 - 
Step-by-step explanation:
Using the addition formula for tangent
tan(A - B) =
and the exact values
tan45° = 1 , tan60° =
, then
tan15° = tan(60 - 45)°
tan(60 - 45)°
= 
=
Rationalise the denominator by multiplying numerator/ denominator by the conjugate of the denominator.
The conjugate of 1 +
is 1 -
=
← expand numerator/denominator using FOIL
= 
= 
=
+ 
= 2 - 
Answer: 30.5
Step-by-step explanation: