Note that
Answer:
Mary's risk premium is $0.9375
Step-by-step explanation:
Mary's utility function,
Mary's initial wealth = $100
The gamble has a 50% probability of raising her wealth to $115 and a 50% probability of lowering it to $77
Expected wealth of Mary, 
= (0.5 * $115) + (0.5 * $77)
= 57.5 + 38.5
= $96
The expected value of Mary's wealth is $96
Calculate the expected utility (EU) of Mary:-
![E_u = [0.5 * U(115)] + [0.5 * U(77)]\\E_u = [0.5 * 115^{0.5}] + [0.5 * 77^{0.5}]\\E_u = 5.36 + 4.39\\E_u = \$ 9.75](https://tex.z-dn.net/?f=E_u%20%3D%20%5B0.5%20%2A%20U%28115%29%5D%20%2B%20%5B0.5%20%2A%20U%2877%29%5D%5C%5CE_u%20%3D%20%5B0.5%20%2A%20115%5E%7B0.5%7D%5D%20%2B%20%5B0.5%20%2A%2077%5E%7B0.5%7D%5D%5C%5CE_u%20%3D%205.36%20%2B%204.39%5C%5CE_u%20%3D%20%5C%24%209.75)
The expected utility of Mary is $9.75
Mary will be willing to pay an amount P as risk premium to avoid taking the risk, where
U(EW - P) is equal to Mary's expected utility from the risky gamble.
U(EW - P) = EU
U(94 - P) = 9.63
Square root (94 - P) = 9.63
If Mary's risk premium is P, the expected utility will be given by the formula:

Mary's risk premium is $0.9375
The number is 28.
The equation would be:
237 + 6(x) = 405
The problem states that 6 times the opposite of a number, however, since the number sign was not given, we do not know whether it is in a positive or negative form. So we leave it as only x.
237 + 6x = 405
6x = 405 - 237
6x = 168
6x / 6 = 168 / 6
x = 28
To check:
237 + 6 (28) = 405
237 + 168 = 405
405 = 405
Answer:
25 yxdyxd7fcc7fc7fcfuufc7cf
12 plus 18 over 3 so it is 12+6 which is 18 So 18 is your final answer