Answer:
76 degrees
Step-by-step explanation:
this special line is an angle bisected.
that means it splits the angle at its starting point in 2 halves. as these names indicate, both parts are of equal size (half of the general angle).
we know one part (2) of this split angle : 38 degrees.
the other part (1) had to be equally sized : 38 degrees.
so, the total angle at point R is the sum of both split angles:
TRS = 38+38 = 76 degrees.
Answer:
See below
Step-by-step explanation:
images attached showing all working
a) The possible values of X are as follows
X = {0,1,2,3,4}
P(x) = P(X=x)
b) The cdf in this case, as in the F(x), comes out to be a step function graph on the basis of values obtained from the probability mass function.
c) To find out the probability when more women are interviewed than me, add together the matrices from when value of X is equal to 2, 3 and 4 (from part a).
Answer:
Sorry for my bad handwriting it's hard write in a computer
Step-by-step explanation:
Answer:
See the explanation.
Step-by-step explanation:
We are given the function f(x) = x² + 2x - 5
Zeros :
If f(x) = 0 i.e. x² + 2x - 5 = 0
The left hand side can not be factorized. Hence, use Sridhar Acharya formula and
and
⇒ x = -3.45 and 1.45
Y- intercept :
Putting x = 0, we get, f(x) = - 5, Hence, y-intercept is -5.
Maximum point :
Not defined
Minimum point:
The equation can be expressed as (x + 1)² = (y + 5)
This is an equation of parabola having the vertex at (-1,-5) and axis parallel to + y-axis
Therefore, the minimum point is (-1,-5)
Domain :
x can be any real number
Range:
f(x) ≥ - 6
Interval of increase:
Since this is a parabola having the vertex at (-1,-5) and axis parallel to + y-axis.
Therefore, interval of increase is +∞ > x > -1
Interval of decrease:
-∞ < x < -1
End behavior :
So, as x tends to +∞ , then f(x) tends to +∞
And as x tends to -∞, then f(x) tends to +∞. (Answer)
Answer:
(2, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = 2x
x = -y + 6
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: y = 2(-y + 6)
- Distribute 2: y = -2y + 12
- Isolate <em>y</em> terms: 3y = 12
- Isolate <em>y</em>: y = 4
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define equation: x = -y + 6
- Substitute in <em>y</em>: x = -4 + 6
- Add: x = 2