If the area of the region bounded by the curve
and the line
is
Sq units, then the value of
will be
.
<h3>What is area of the region bounded by the curve ?</h3>
An area bounded by two curves is the area under the smaller curve subtracted from the area under the larger curve. This will get you the difference, or the area between the two curves.
Area bounded by the curve
We have,
⇒ 
,
Area of the region
Sq units
Now comparing both given equation to get the intersection between points;

So,
Area bounded by the curve
![\frac{256}{3} =\[ \int_{0}^{4a} \sqrt{4ax} \,dx \]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%20%3D%5C%5B%20%20%5Cint_%7B0%7D%5E%7B4a%7D%20%5Csqrt%7B4ax%7D%20%20%5C%2Cdx%20%5C%5D)
![\frac{256}{3}= \[\sqrt{4a} \int_{0}^{4a} \sqrt{x} \,dx \]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%20%20%20%5C%5B%5Csqrt%7B4a%7D%20%20%5Cint_%7B0%7D%5E%7B4a%7D%20%5Csqrt%7Bx%7D%20%20%5C%2Cdx%20%5C%5D)
![\frac{256}{3}= 2\sqrt{a} \left[\begin{array}{ccc}\frac{(x)^{\frac{1}{2}+1 } }{\frac{1}{2}+1 }\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B%28x%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
![\frac{256}{3}= 2\sqrt{a} \left[\begin{array}{ccc}\frac{(x)^{\frac{3}{2} } }{\frac{3}{2} }\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B%28x%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%7D%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
![\frac{256}{3}= 2\sqrt{a} *\frac{2}{3} \left[\begin{array}{ccc}(x)^{\frac{3}{2}\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%2A%5Cfrac%7B2%7D%7B3%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28x%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
On applying the limits we get;
![\frac{256}{3}= \frac{4}{3} \sqrt{a} \left[\begin{array}{ccc}(4a)^{\frac{3}{2} \end{array}\right]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Csqrt%7Ba%7D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%284a%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D)



⇒ 

Hence, we can say that if the area of the region bounded by the curve
and the line
is
Sq units, then the value of
will be
.
To know more about Area bounded by the curve click here
brainly.com/question/13252576
#SPJ2
For 1.30 you will shade in one full grid because that equals 1 and also shade in 3 coloms on the next grid which equals .30.
Then shade in 5 coloms and 1 single block on the the next grid which will equal .51 after
Rhombus , 4 sides are equal
so
AB = √(15^2 +20^2)
AB = √(225 + 400)
AB = √625
AB = 25
P = 4a
P = 4(25)
P = 100
answer
H. 100 in
Answer:
0.938
Step-by-step explanation:
From the question :
p = 0.14
Number of children, n = 7
P(x ≤ 2) = P(2) + P(1) + P(0)
Using binomial probability :
P(x =x) = nCx * p^x * (1 - p)^(n - x)
We could also use the binomial probability calculator :
P(x ≤ 2) = 0.3479 + 0.3965 + 0.1936
P(x ≤ 2) = 0.938
Answer:
The 99% confidence interval for the average length of time all car owners plan to keep their cars is between 3.85 years and 10.55 years.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 7.2 - 3.35 = 3.85 years
The upper end of the interval is the sample mean added to M. So it is 7.2 + 3.35 = 10.55 years
The 99% confidence interval for the average length of time all car owners plan to keep their cars is between 3.85 years and 10.55 years.