Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4
First we need to figure out how much Susan made per hour
117/9 = 13 dollars per hour
Then find out how much she makes in 7 hours
13 • 7 = 91 dollars
$91 in 7 hours
Answer: 0.0125
Step-by-step explanation:
Given : A survey by the Pew Research Center asked a random sample of 2142 U.S. adults and a random sample of 1055 college presidents how they would "rate the job the higher education system is doing in providing value for the money.
5% the U.S. adults and 17% of the college presidents provided a rating of "Excellent."
i.e. 
, 
The standard error of the difference in sample proportions :-


Hence, the standard error of the difference in sample proportion = 0.0125