Answer:
look at my Step-by-step explanation
Step-by-step explanation:
The perpendicular bisector of a line segment
open the compass more than half of the distance between A and B, and scribe arcs of the same radius centered at A and B.
Call the two points where these two arcs meet C and D. Draw the line between C and D.
CD is the perpendicular bisector of the line segment AB. Call the point where CD intersects AB E.
Proof. top.
Answer:
tbh there are quite a lot of possibilities
I'll just name the properties but not show which angle applies to it cos that's too time consuming
Step-by-step explanation:
vertically opposite angles
interior / exterior alternate angles
corresponding angles
angles on a straight line are supplementary
X2 = 50
Divide both sides by 2
X2/2 = 50/2
X = 25
Answer:
<h2><em><u><</u></em><em><u>ABT</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>43</u></em><em><u>°</u></em></h2><h2><em><u><</u></em><em><u>TBC</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>43</u></em><em><u>°</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
Line BT is the bisector of <ABC
<em><u>So</u></em><em><u>,</u></em>
3x + 13 = 5x - 7
=> 13 + 7 = 5x - 3x
=> 20 = 2x

=> x = 10
<em><u>As</u></em><em><u>,</u></em><em><u> </u></em>
We got the value of <em><u>x = 10</u></em>
<em><u>Therefore</u></em><em><u>, </u></em>
<em><u><ABT</u></em> = 3x + 13 °
= 3×10 + 13 °
= 30 + 13°
= <em><u>43°</u></em>
<em><u><TBC</u></em> = 5x - 7°
= 5 × 10 - 7°
= 50 - 7°
= <em><u>43°</u></em>
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Value</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u><</u></em><em><u>ABT</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>43</u></em><em><u>°</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>value</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u><</u></em><em><u>TBC</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>43</u></em><em><u>°</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>