1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka21 [38]
3 years ago
14

Anybody know the answer?

Mathematics
1 answer:
Nostrana [21]3 years ago
5 0

Answer:

2x +  {y}^{2}

You might be interested in
The sum of thrice a number and 5 is greater than or equal to the sum of twice a number and 1. Write down the inequality and solv
sertanlavr [38]

Answer:

May be helpful.

thx.......

7 0
1 year ago
Information collected from runner 3# is in the table below
Shtirlitz [24]

Answer:

the constant of proportionality would be 9

5 0
3 years ago
tom ate 1/4 of a pizza. He divided the leftover pizza into pieces each equal to 1/12 of the Original Pizza. After he gave some f
Bezzdna [24]
To make this easy let covert everything using a LCD.

The LCD of 1/4  1/12 and 1/6  is 12. This becomes...

Tom ate 3/12 of the pizza.
Leftover pizza = 9/12.
Slices were 1/12.
X friends got pizza.
Remaining pizza is 2/12.

if each friend got 1 piece(1/12)....
9/12(Leftovers) - 2/12(remaining)  = 7/12

So 7 friends got pizza.
6 0
3 years ago
Quick easy one to do!! 15pts​
Lyrx [107]

Answer:

34

Step-by-step explanation:

90-56=34

3 0
3 years ago
Read 2 more answers
Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the trian
Alla [95]

Answer: mass (m) = 4 kg

              center of mass coordinate: (15.75,4.5)

Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.

The region D is shown in the attachment.

From the image of the triangle, lamina is limited at x-axis: 0≤x≤2

At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):

<u>Points (0,0) and (2,1):</u>

y = \frac{1-0}{2-0}(x-0)

y = \frac{x}{2}

<u>Points (2,1) and (0,3):</u>

y = \frac{3-1}{0-2}(x-0) + 3

y = -x + 3

Now, find total mass, which is given by the formula:

m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }

Calculating for the limits above:

m = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2(x+y)} \, dy \, dx  }

where a = -x+3

m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {(xy+\frac{y^{2}}{2} )} \, dx  }

m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx  }

m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx  }

m = 2.(\frac{-3.2^{2}}{2}+3.2-0)

m = 2(-4+6)

m = 4

<u>Mass of the lamina that occupies region D is 4.</u>

<u />

Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }

M_{x} and M_{y} are moments of the lamina about x-axis and y-axis, respectively.

Calculating moments:

For moment about x-axis:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2.y.(x+y)} \, dy\, dx }

M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {y.x+y^{2}} \, dy\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24}  )}\, dx }

M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)

M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)

M_{x} = 18

Now to find the x-coordinate:

x = \frac{M_{y}}{m}

x = \frac{63}{4}

x = 15.75

For moment about the y-axis:

M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2x.(x+y))} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {x^{2}+yx} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }

M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8}  } } \,dx }

M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2}   } \,dx }

M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})

M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)

M{y} = 63

To find y-coordinate:

y = \frac{M_{x}}{m}

y = \frac{18}{4}

y = 4.5

<u>Center mass coordinates for the lamina are (15.75,4.5)</u>

3 0
4 years ago
Other questions:
  • A 12-foot ladder rests against a wall. The ladder is placed 5 feet from the base of the wall. Find the angle the ladder makes wi
    8·1 answer
  • Turn 177 divided by 20 into a mixed number
    8·1 answer
  • Is this correct if not help me
    5·1 answer
  • Apply the distributive property to factor out the greatest common factor. 35+50=
    8·1 answer
  • What is 2.45 as a percent
    15·1 answer
  • A bathtub is draining at a constant rate. After 2 minutes, it holds 30 gallons of water. Three minutes later, it holds 12 gallon
    8·1 answer
  • A family of 5 bought airline tickets. In addition to their ticket,each person had to pay $39 to check their bag. They spent a to
    11·1 answer
  • Find the measure of COA. Then, classify the angle.
    8·1 answer
  • #1. Use substitution to solve the system of equations
    8·1 answer
  • Help I need the awnser asap
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!