Answer:
Step-by-step explanation:
You are being asked to compare the value of a growing infinite geometric series to a fixed constant. Such a series will always eventually have a sum that exceeds any given fixed constant.
__
<h3>a)</h3>
Angelina will get more money from the Choice 1 method of payment. The sequence of payments is a (growing) geometric sequence, so the payments and their sum will eventually exceed the alternative.
__
<h3>c)</h3>
For a first term of 1 and a common ratio of 2, the sum of n terms of the geometric series is given by ...
Sn = a1×(r^n -1)/(r -1) . . . . . . . . . . series with first term a1, common ratio r
We want to find n such that ...
Sn ≥ 1,000,000
1 × (2^n -1)/(2 -1) ≥ 1,000,000
2^n ≥ 1,000,001 . . . . add 1
n ≥ log(1,000,001)/log(2) . . . . . take the base-2 logarithm
n ≥ 19.93
The total Angelina receives from Choice 1 will exceed $1,000,000 after 20 days.
The better deal would be the 16 oz bag since it costs .24 cents an ounce.
You would be saving .2 cents on each ounce you buy.
Maria = x
Tom = y
Use substitution
x+y=30
2y=x
2y+y=30
3y=30
y=10
Tom is 10 years old.
x+y=30
x+10=30
x=20
Maria is 20 years old.
..........................................................................
A circle doesnt have a sides so 0