Answer:
A. 0.5
B. 0.32
C. 0.75
Step-by-step explanation:
There are
- 28 students in the Spanish class,
- 26 in the French class,
- 16 in the German class,
- 12 students that are in both Spanish and French,
- 4 that are in both Spanish and German,
- 6 that are in both French and German,
- 2 students taking all 3 classes.
So,
- 2 students taking all 3 classes,
- 6 - 2 = 4 students are in French and German, bu are not in Spanish,
- 4 - 2 = 2 students are in Spanish and German, but are not in French,
- 12 - 2 = 10 students are in Spanish and French but are not in German,
- 16 - 2 - 4 - 2 = 8 students are only in German,
- 26 - 2 - 4 - 10 = 10 students are only in French,
- 28 - 2 - 2 - 10 = 14 students are only in Spanish.
In total, there are
2 + 4 + 2 + 10 + 8 + 10 +14 = 50 students.
The classes are open to any of the 100 students in the school, so
100 - 50 = 50 students are not in any of the languages classes.
A. If a student is chosen randomly, the probability that he or she is not in any of the language classes is

B. If a student is chosen randomly, the probability that he or she is taking exactly one language class is

C. If 2 students are chosen randomly, the probability that both are not taking any language classes is

So, the probability that at least 1 is taking a language class is

Answer:
Step-by-step explanation: the answer is C y= 4x + 2 (usatestprep)
Answer: b)
Step-by-step explanation:
3^3 is equal to 27 exactly, but it asks for an approximate. 27.55 is near 27 so yea, there ya go ^
A variable is a letter, for example x, y or z, that represents an unspecified number.
6 + x = 12
To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12.
Answer:
The dilation on any point of the rectangle is
.
Step-by-step explanation:
From Linear Algebra, we define the dilation of a point by means of the following definition:
(1)
Where:
- Coordinates of the point G, dimensionless.
- Center of dilation, dimensionless.
- Scale factor, dimensionless.
- Coordinates of the point G', dimensionless.
If we know that
,
and
, then scale factor is:
![(5,-5) = (0,0) +k\cdot [(2,-2)-(0,0)]](https://tex.z-dn.net/?f=%285%2C-5%29%20%3D%20%280%2C0%29%20%2Bk%5Ccdot%20%5B%282%2C-2%29-%280%2C0%29%5D)


The dilation on any point of the rectangle is:
![P'(x,y) = (0,0) + \frac{5}{2}\cdot [P(x,y)-(0,0)]](https://tex.z-dn.net/?f=P%27%28x%2Cy%29%20%3D%20%280%2C0%29%20%2B%20%5Cfrac%7B5%7D%7B2%7D%5Ccdot%20%5BP%28x%2Cy%29-%280%2C0%29%5D)
(2)
The dilation on any point of the rectangle is
.