(3,-2) because you are just flipping the coordinate over the x axis
Answer:
<em>a</em><em>)</em><em>=</em><em> </em><em>5x</em><em>+</em><em>10</em>
<em>b</em><em>)</em><em>=</em><em> </em><em>7y-6</em>
<em>c</em><em>)</em><em>=</em><em> </em><em>6x-6</em>
<em>d</em><em>)</em><em>=</em><em> </em><em>2x</em><em>^</em><em>2</em><em>+</em><em>8x-5</em>
<em>e</em><em>)</em><em>=</em><em> </em><em>6x</em><em>+</em><em>9</em>
<em>f</em><em>)</em><em>=</em><em> </em><em>4xy-4y</em><em>^</em><em>2</em><em>+</em><em>8y</em>
<em>g</em><em>)</em><em>=</em><em> </em><em>-12y</em><em>^</em><em>2</em><em>+</em><em>10y</em>
<em>h</em><em>)</em><em>=</em><em> </em><em>6x</em><em>+</em><em>154</em>
<em>i</em><em>)</em><em>=</em><em> </em><em>6x</em><em>+</em><em>21</em>
<em>h</em><em>)</em><em>=</em><em> </em><em>2x</em><em>^</em><em>2</em><em>+</em><em>16</em>
Step-by-step explanation:
Regression analysis is used to infer about the relationship between two or more variables.
The line of best fit is a straight line representing the regression equation on a scatter plot. The may pass through either some point or all points or none of the points.
<u>Method 1:</u>
Using regression analysis the line of best fit is: 
Here <em>α </em>= intercept, <em>β</em> = slope and <em>e</em> = error.
The formula to compute the intercept is:

Here<em> </em>
and
are mean of the <em>y</em> and <em>x</em> values respectively.

The formula to compute the slope is:

And the formula to compute the error is:

<u>Method 2:</u>
The regression line can be determined using the descriptive statistics mean, standard deviation and correlation.
The equation of the line of best fit is:

Here <em>r</em> = correlation coefficient = 
and
are standard deviation of <em>x</em> and <em>y</em> respectively.

You use a closed dot with the greater than or less than with the line under the symbol or the greater than or equal to or the less than or equal to symbols. The line indicates a closed dot.