Answer: The mother of the man can be either XHXH or XHXh and pass her normal allele to the son and his father can be either XHY or XhY, he only passes his Y chromosome. The mother of the woman can be XHXH or XHXh and the father could be XhY, then she could have inherited the normal allele from the mother and the affected allele from the father. But also, the mother of the woman could be XHXh or XhXh and the father could be XHY, so in this case she could have inherited the normal alele from the father and the affected allele from the mother.
Explanation:
Hemophilia is an inherited bleeding disorder in which the blood does not clot properly. This can cause bleeding either spontaneously or after an injury.
<u>It is related to the X chromosome and it is recessive for females</u>, this mean they need both affected alleles to develop the trait. <u>Males only need one recessive allele because they only have one X chromosome</u>. This means that females need both parents to be at least carriers (although one or both can also have the disease or both recessive alleles). While males inherit it only from the mother, either she is a carrier (one recessive allele) or she has the disease (both recessive alleles). Then the mother passes the X chromosome with the affected allele to the son, and that son only receives the Y chromosome from the father, which does not have the gene that determines this disease.
If the mother is a carrier, her genotype is XHXh, being XH the normal allele and Xh the affected allele. She does not have hemophilia because she has a dominant allele. The father is XHY, so he does not have the disease because his only allele is normal (dominant)
The mother of the man can be either XHXH (she can only pass a normal allele) or XHXh and pass her normal allele to the son (in this case, the recessive allele is not inherited by chance.) His father can be either XHY or XhY, he only passes his Y chromosome which is not related to the disease. The mother of the woman can be XHXH or XHXh and the father could be XhY, then she could have inherited the normal allele from the mother and the affected allele from the father. But also, the mother of the woman could be XHXh or XhXh and the father could be XHY, so in this case she could have inherited the normal alele from the father and the affected allele from the mother.
Answer:
Opposition
Explanation:
Opposition is the type of movement that is only for the hands. Opposition is them movement where you bring your finger/s in contact with your thumb. When you put it back to its anatomical position, which is beside the index finger (pointing finger) this is called <em>reposition.</em>
Retraction occurs in the scapula (Shoulder blades) and mandible (jaw). Dorsiflexion you see that happen in your foot. When you bring your toes closer to the shin. Supination is more on the forearm and foot, where you rotate it so your palms are facing forward (sole facing the other ankle for feet). Flexion is the movement of body parts where you bring them closer to each other at a joint (the angle between the two parts are lessened). Like when you bend your elbows to "flex" muscles.
Answer- Lower latitudes of Coniferous Forests.
In the lower latitudes of coniferous forests, precipitation is more evenly distributed throughout the year. This Biome can be found in Canada, Europe, Asia, and the United States; they mostly consist <span>consist of conifers (trees that grow needles and cones instead of leaves and flowers respectively).</span>
Answer:
read the explanation.
Explanation:
Both are enzymes, both has active sites because they are enzymes. A difference is that serine proteases has serine aminoacids in it active site. The aspartic proteases has an activated water molecule bond to one or more aspartate aminoacid in its active site.
Serine proteases are two main kinds, chymotrypsin and subtilisin kind. Aspartic proteases are three main kinds, pepsin, cathepsin and renins.
Serine proteases are found either in eukaryotes and prokaryotes, meanwhile the aspartic proteases are found mainly in eukaryotes as molds and yeast but rarely in prokaryotes such as bacteria.
Hope this info is useful.
The answer is abdominal cavity ! hope this helped you :)