1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
2 years ago
6

janet obtained 32% for her statistics test, which was out of a total of 300 marks. how much should she score in the computer sci

ence test that is out of 200 marks in total if she is to get proportionally weighted average of 46%​
Mathematics
1 answer:
vesna_86 [32]2 years ago
8 0

Her score in computer to get a proportionally weighted average of 46% will be 134.

The total score for both subjects = 200 + 300 = 500

Since the proportionally weighted average is 46%, then her score will be:

= 46% × 500

= 0.46 × 500

= 230

Since she had 32% for her statistics test, which was out of a total of 300. Her score will be:

= 32% × 300

= 0.32 × 300

= 96

Therefore, her score in computer will be:

= 230 - 96

= 134

Read related link on:

brainly.com/question/24429956

You might be interested in
PLZ HELP WILL GIVE BRAINLEST
Zarrin [17]
B....................
5 0
2 years ago
Escribe una ecuación de la recta que pasa por el punto (5, –8) con pendiente 5.
Nana76 [90]

Considerando la expresión de una ecuación lineal, la ecuación de la recta que pasa por el punto (5, –8) con pendiente 5 es y= 5x - 33.

<h3>Ecuación lineal</h3>

Una ecuación lineal o línea se puede expresar en la forma y = mx + b

donde

  • x y son coordenadas de un punto.
  • m es la pendiente.
  • b es la ordenada al origen y representa la coordenada del punto donde la línea cruza el eje y.

La ecuación lineal se puede expresar también mediante la ecuación punto-pendiente de la recta, que se plantea si se conoce la pendiente de la recta y cualquiera de sus puntos. Con ello queda determinada la recta, conociendo la pendiente  “m” y un punto  (x1, y1) dado:

y - y1= m(x -x1)

<h3>Ecuación de la recta en este caso</h3>

En este caso, la recta que pasa por el punto (5, –8) con pendiente 5.

Reemplazando en la ecuación punto-pendiente de la recta:

y - (-8)= 5(x -5)

Resolviendo:

y + 8= 5(x -5)

Aplicando propiedad distributiva:

y + 8= 5x - 5×5

y + 8= 5x - 25

Aislando la variable "y":

y= 5x - 25 - 8

<u><em>y= 5x - 33</em></u>

Finalmente, la ecuación de la recta que pasa por el punto (5, –8) con pendiente 5 es y= 5x - 33.

Aprende más sobre ecuación de una recta:

brainly.com/question/25243069

brainly.com/question/19260315

brainly.com/question/24766917

#SPJ1

4 0
1 year ago
What is 3 ÷ 1/2 can you help me with this
Vsevolod [243]

Answer: 1.5 or 1 1/2

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Sketch the graph of y+2=1/2(x-3)
valentina_108 [34]

Answer:

Step-by-step explanation:

y= 1/2x + −7/2

5 0
2 years ago
Suppose 52% of the population has a college degree. If a random sample of size 563563 is selected, what is the probability that
amm1812

Answer:

The value is  P(| \^ p -  p| < 0.05 ) = 0.9822

Step-by-step explanation:

From the question we are told that

    The population proportion is  p =  0.52

     The sample size is  n  =  563      

Generally the population mean of the sampling distribution is mathematically  represented as

           \mu_{x} =  p =  0.52

Generally the standard deviation of the sampling distribution is mathematically  evaluated as

       \sigma  =  \sqrt{\frac{ p(1- p)}{n} }

=>      \sigma  =  \sqrt{\frac{ 0.52 (1- 0.52 )}{563} }

=>      \sigma  =   0.02106

Generally the  probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

            P(| \^ p -  p| < 0.05 ) =  P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 ))

  Here  \^ p is the sample proportion  of persons with a college degree.

So

 P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma }  < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )

Here  

    \frac{[\^p - p] - p}{\sigma }  = Z (The\ standardized \  value \  of\  (\^ p - p))

=> P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 }  <  Z  < \frac{-0.47 + 0.52}{0.02106 }]

=> P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P[ -2.37 <  Z  < 2.37 ]

=>  P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P(Z <  2.37 ) - P(Z < -2.37 )

From the z-table  the probability of  (Z <  2.37 ) and  (Z < -2.37 ) is

  P(Z <  2.37 ) = 0.9911

and

  P(Z <  - 2.37 ) = 0.0089

So

=>P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) =0.9911-0.0089

=>P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = 0.9822

=> P(| \^ p -  p| < 0.05 ) = 0.9822

3 0
3 years ago
Other questions:
  • Which number has the greatest absolute value?
    12·2 answers
  • Perform the operation 3/a^2+2/ab^2
    8·1 answer
  • How do I solve 3 1/2r = 28
    11·2 answers
  • Look at the picture for the problem
    6·1 answer
  • Khalid buys story books from an online store. Each book costs AED12.99 and shipping fee is charged at AED 4.95 for all the books
    9·1 answer
  • PLEASE HELP ME ANSWER THESE QUESTIONS will give BRAINLIEST
    10·1 answer
  • 5 divided by 7/8 as a fraction <br> Pls help 44 points
    10·1 answer
  • A taxi charges $1.75 plus a free of $0.75 for each mile traveled the total cost of a ride without a tip is, $4.75. How many mile
    14·2 answers
  • What value of x makes this true 1.5x=120?
    7·2 answers
  • Solve each equation by factoring, by taking square roots, or by grouping. When necessary round to the nearest hundredth.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!