Answer:
The simple solutions are:
Right 6: (-2+6,-3) = (4,3)
Left 6: (-2-6,-3) = (-8,-3)
Up 6: (-2,-3+6) = (-2, 3)
Down 6: (-2,-3-6) = (-2,-9)
Those are for horizontal or vertical
line segments.
Step-by-step explanation:
If
, then by rationalizing the denominator we can rewrite

Now,

and



Answer:
Step-by-step explanation:
(x₁, y₁) = (-2 , -5) & (x₂ , y₂) = (-3 , 1)
Midpoint = 
![=(\frac{-2 + [-3]}{2} ,\frac{-5 + 1}{2})\\\\\\=(\frac{-5}{2} , \frac{-4}{2})\\\\=(-2.5, -2)](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B-2%20%2B%20%5B-3%5D%7D%7B2%7D%20%2C%5Cfrac%7B-5%20%2B%201%7D%7B2%7D%29%5C%5C%5C%5C%5C%5C%3D%28%5Cfrac%7B-5%7D%7B2%7D%20%2C%20%5Cfrac%7B-4%7D%7B2%7D%29%5C%5C%5C%5C%3D%28-2.5%2C%20-2%29)
Answer:
7y^2 - y^2z - 10yz-5
C. 7 y squared minus y squared z minus 10 y z minus 5
Step-by-step explanation:
A. y squared minus y squared z minus 10 y z minus 5
B. y squared minus y squared z minus 5 y z minus 5
C. 7 y squared minus y squared z minus 10 y z minus 5
D. 7 y squared minus y squared z minus 2 y z minus 5
Given:
3y^2 - 6yz - 7 + 4y^2 - 4yz + 2 - y^2z
Collect like terms in the expression
3y^2 + 4y^2 - 6yz - 4yz - y^2z - 7 + 2
Simplify
7y^2 - 10yz - y^2z - 5
Rewritten as
7y^2 - y^2z - 10yz-5
Option C. 7 y squared minus y squared z minus 10 y z minus 5
Is the answer