Answer: 3p+5=11
Step-by-step explanation:
3p+5=11
-5 -5
3p=6
3p/3=6/3
P=2
$2
Answer:
3 grams
Step-by-step explanation:
We are going to take the mass of a bunch of little strips below the triangle "roof." To do this, we must figure out what formula for the mass we'll use, in this case, we'll use:
Mass of strip = denisty * area = (1+x)*y*deltax grams
now, because the "roof" of the triangle contains two different integrals (it completely changes direction), we will use TWO integrals!
**pretend ∈ is the sum symbol
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral -1 to 0 of (1+x)*3*(x+1) = 3 * integral -1 to 0 of (x^2 + 2x + 1) = 3 * 1/3 = 1
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral 0 to 1 of (1+x)*3*(-x+1) = 3 * integral 0 to 1 of (-x^2 + 1) = 3 * 2/3 = 2
Total mass = mass left + mass right = 1 + 2 = 3 grams
Answer:
Follows are the solution to the given point:
Step-by-step explanation:
In point a:
¬∃y∃xP (x, y)
∀x∀y(>P(x,y))
In point b:
¬∀x∃yP (x, y)
∃x∀y ¬P(x,y)
In point c:
¬∃y(Q(y) ∧ ∀x¬R(x, y))
∀y(> Q(y) V ∀ ¬ (¬R(x,y)))
∀y(¬Q(Y)) V ∃xR(x,y) )
In point d:
¬∃y(∃xR(x, y) ∨ ∀xS(x, y))
∀y(∀x>R(x,y))
∃x>s(x,y))
In point e:
¬∃y(∀x∃zT (x, y, z) ∨ ∃x∀zU (x, y, z))
∀y(∃x ∀z)>T(x,y,z)
∀x ∃z> V (x,y,z))
I would try B.
I'm not positive i got it right
(sorry if its wrong)
Hope this helped!
:)
Answer: x > 20
Step-by-step explanation:
x + 10 > 30
-10 -10
x > 20