What is the rest of the question??
Answer:
f−1(f(x)) = f(f−1(x)) = x
Step-by-step explanation:
Follow this simple example using the function f(x) = x + 2
f(x) = x + 2
NOw we find the inverse function f^(1)(x).
y = x + 2
x = y + 2
y = x - 2
f^(-1)(x) = x - 2
The inverse function is f^(-1)(x) = x - 2
Now we do the two compositions of functions:
f^(-1)(f(x)) = x + 2 - 2 = x
f(f^(-1)(x)) = x - 2 + 2 = x
Both are equal to x.
Answer: f−1(f(x)) = f(f−1(x)) = x
Answer:
30%
Step-by-step explanation:
Meagan completed 14/20 math problems. 14÷20 is 0.7
So she completed 70% of those math problems. The question is How many does she have left?
So she has 30% left to complete.
Recall that to get the x-intercepts, we set the f(x) = y = 0, thus
![\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right) \\\\\\ cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2} \\\\\\ x-\cfrac{\pi }{2}= \begin{cases} \frac{\pi }{2}\\\\ \frac{3\pi }{2} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-4cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%5Cimplies%200%3Dcos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0Acos%5E%7B-1%7D%280%29%3Dcos%5E%7B-1%7D%5Cleft%5B%20cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%280%29%3Dx-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Ax-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5C%5C%5C%5C%0A%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bcases%7D)
You want to find the value of x for which the area under the curve to the left of x is 0.6. One way to do that is to create the cumulative distribution function (CDF) for the given PDF, then see where it is equal to 0.6.
Doing that, we find a = 5.