Answer:
A mutation in Ras protein which will cause hyperactivity will eventually lead to cancer.
Explanation:
Ras protein was first discovered in Rous sarcoma virus (RSV) and it is a proto-oncogene product. In normal conditions, it plays an important role in cellular signalling but in case of gain of function/hyperactivity it gets converted into cellular oncogene. In several types of cancers a point mutation has been reported in Ras protein.
Just like G protein, it is also a GTPase switch protein but unlike G protein which is trimeric, it is monomeric. In the plasma membrane, it is attached with the help of lipids like prenyl or palmitoyl groups. During signal transduction pathway when it gets activated, it downstream activates MAPK pathway and causes gene expression but when it gets hyperactivated it causes over expression of genes leading to cancer.
Answer:
ATP synthesis by oxidative phosphorylation will stop.
Explanation:
Cyanide inhibits cytochrome oxidase that passes electrons to the molecule oxygen. Cytochrome oxidase also pumps two protons from the matrix to the intermembrane space during electron transfer. Inhibition of cytochrome oxidase would not allow the transfer of electrons to oxygen and the whole electron transport chain would be stopped. There would not be any generation of proton concentration gradient to drive the process of ATP synthesis. Hence, ATP synthesis by oxidative phosphorylation will be stopped after cyanide poisoning in aerobic cells.
The effect of glucagon can get you nausea, vomiting, headaces, rhinorrhea and nasal pain.
Answer:
amoeba
Explanation:
unicellular are the organism which have single cell.