Answer:
The center is (-10,10) and the radius is 4sqrt(3)
Step-by-step explanation:
(x + 10)^2 + (y - 10)^2 = 48
We can write the equation of a circle as
(x -h)^2 + (y - k)^2 = r^2 where (h,k) is the center and r is the radius
(x- -10)^2 + (y - 10)^2 = (sqrt(16*3) )^2
(x- -10)^2 + (y - 10)^2 = (4sqrt(3)) ^2
The center is (-10,10) and the radius is 4sqrt(3)
The value of x of a circle with radius x + 1.5 and diameter of 9 2 / 5 cm is 7.9 cm
<h3>Radius of a circle</h3>
Radius of a circle is half of the diameter of a circle. The radius extend from the centre of the circle to the circumference.
Mathematically,
radius = 1 / 2 (diameter)
Therefore,
radius = (x + 1.5) cm
diameter = 9 2 / 5 cm = 47 / 5 cm
let's find x with the relationship above.
Therefore,
x + 1.5 = 47 / 5
subtract 1.5 from both sides
x + 1.5 - 1.5 = 9.4 - 1.5
x = 7.9 cm
learn more on radius here: brainly.com/question/12183018
Answer:
Her speed on the summit was 35 mph.
Step-by-step explanation:
Her speed on the summit was "x" mph while her speed while climbing was "x - 10" mph. The distance she rode uphill was 55 miles and on the summit it was 28 miles. The total time she explored the mountain was 3 hours. Therefore:
time uphill = distance uphill / speed uphill = 55 / (x - 10)
time summit = distance summit / speed summit = 28 / x
total time = time uphill + time summit
3 = [55 / (x - 10)] + 28 / x
3 = [55*x + 28*(x - 10)]/[x*(x - 10)]
3*x*(x - 10) = 55*x + 28*x - 280
3x² - 30*x = 83*x - 280
3x² - 113*x + 280 = 0
x1 = {-(-113) + sqrt[(-113)² - 4*(3)*(280)]}/(2*3) = 35 mph
x2 = {-(-113) - sqrt[(-113)² - 4*(3)*(280)]}/(2*3) = 2.67 mph
Since her speed on the uphill couldn't be negative the speed on the summit can only be 35 mph.
Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)